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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe the Divide & Conquer algorithmic design technique

• Apply the technique to designing algorithms for an important 
problem, Sorting, in two different ways

• Draw and appreciate the strong connection between recursion and 
Divide & Conquer

• Carry out time complexity analysis of Divide & Conquer 
algorithms, by deriving and solving recurrence relations

• Perform worst-case and average-case time complexity analysis
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OUTLINE

• Template for Divide and Conquer

• First Application: Mergesort

• Second Application: Quicksort
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DIVIDE & CONQUER
-- GENERAL STRATEGY AND UNDERLYING PHILOSOPHY --

• The general strategy is 
• Examine the size or magnitude  of the input of the problem

• If small enough, solve the problem directly
• Such solutions are fairly simple, and often trivial, for small input

• If not small, divide the input into two or more (smaller) parts

• Solve the same problem on each part 
• by calling the algorithm recursively on each part

• which is a huge saving in intellectual/design effort

• Merge the subsolutions (i.e., the solutions of the parts) into a global 
solution

• Merging subsolutions is usually simpler than finding a global solution from scratch
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DIVIDE & CONQUER
-- TEMPLATE --

Template divide&conquer (input I)

begin

if (size or value of input is small enough) 
then 

solve directly and return;

endif

divide input I into two or more parts I1, I2,...;

S1 divide&conquer(I1) ;

S2 divide&conquer(I2) ;

……………..

Merge the subsolutions S1, S2,...into a 

global solution S;

end
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FIRST APPLICATION
-- SORTING --

• The Sorting problem:

• Input: An arbitrary array of numbers 

• or array of any data type for which we have a comparator like ≤

• Output: the same input but in increasing order (from min to max)

• Goal: Apply Divide & Conquer to design an algorithm for sorting

• Note: we can sort into decreasing order (from max to min)

• simply change ≤ to ≥
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FIRST APPLICATION
-- SORTING REMARKS --

• Sorting is one of the oldest problems in CS

• Sorting algorithms are among the most widely used in IT

• Many sorting algorithms have been developed

• “First-generation” sorting algorithms take O(n2) time, which is 
relatively slow, especially for large n 

• Some 1st gen sorting algs:  insertion sort, selection sort, exchange sort

• Divide & Conquer sorting algorithms are much faster, as will be 
seen in this lecture
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FIRST APPLICATION
-- MERGESORT--

Proc.  Mergesort (in A[1:n], i,j; out B[1:n])
// sorts A[i:j] to B[i:j]
begin

generic C[1:n]; // same type as A
if i==j then B[i] = A[i]; Return; endif
Mergesort (A,i,(i+j)/2;C); // sorts 1st half
Mergesort(A,(i+j)/2 +1,j;C); // sorts 2nd half
Merge(C,i,j;B); // merges the two sorted 

// halves into a single sorted array
end Mergesort

To sort whole array: call Mergesort (A,1,n;B)

Procedure Merge(in C i,j; out B)
// merges C[i:k] and C[k+1:j] into B[i:j]
// k=(i+j)/2
begin

int k=(i+j)/2, u=i, v=k+1, w=u;
// u scans C[i:k], v scans C[k+1:j]
// w indexes B
while  (u <= k and v <= j) do

if C[u] <= C[v] then B[w++]=C[u++]; 
else B[w++]=C[v++]; 
endif

endwhile
if u > k then B[w:j] = C[v:j];
elseif v>j then B[w:j] = C[u:k]; 
endif

end Merge
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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ILLUSTRATION OF MERGESORT
-- WHAT GOES ON INSIDE THE COMPUTER --
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Divide

• This is what goes 
on inside the 
computer when 
executing 
Metgesort

• But, don’t do that 
“at home”

• Rather, … (see 
next slide)



THE “BOSS-VIEW” OF MERGESORT
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Divide

Recursive Call
(clone-subordinate)

Recursive Call
(clone-subordinate)

Proper Mindset:
1. Divide data into 

parts
2. Then, as a boss, 

hand each part to a 
clone-subordinate

3. Wait for each 
subordinate to 
come back with its 
sub-solution

4. Then, as the boss, 
you take the sub-
solutions and 
merge into a 
global solution 

5. As as boss, you 
take the credit!

• NEVER 
MICROMANAGE 
your subordinates



TIME COMPLEXITY OF MERGESORT
-- DERIVING A RECURRENCE RELATION --

• Time of Merge: O(n)=cn, for some constant c, because:
• After each comparison, the input loses one element

• Once the input loses all its elements (after ≤ n comparisons), it is 
done

• Time of Mergesort: 
• Let 𝑇𝑇 𝑛𝑛 be the time of Mergesort of n elements

• 𝑇𝑇 𝑛𝑛 = (time of each Mergesort on n/2 elements)+(time of Merge)

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐,    T(1)=constant=c

• The above is called a recurrence relation
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TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION --

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑐𝑐,    T(1)=constant=c.  Assume 𝒏𝒏 = 𝟐𝟐𝒌𝒌
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𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑐𝑐

𝑇𝑇
𝑛𝑛
2 = 2𝑇𝑇

𝑛𝑛
22 + 𝑐𝑐

𝑛𝑛
2

𝑇𝑇
𝑛𝑛
22 = 2𝑇𝑇

𝑛𝑛
23 + 𝑐𝑐

𝑛𝑛
22

…

𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 𝑐𝑐
𝑛𝑛

2𝑘𝑘−1

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑐𝑐

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 2𝑐𝑐

𝑛𝑛
2

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 22𝑐𝑐

𝑛𝑛
22

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 2𝑘𝑘−1𝑐𝑐
𝑛𝑛

2𝑘𝑘−1
• Each line above came from 

applying the recurrence relation 
on some 𝑛𝑛

2𝑖𝑖
, for 𝑖𝑖 = 0, 1, 2, … , k − 1

• Multiply each 𝑖𝑖𝑡𝑡𝑡 line above by 2𝑖𝑖

• Can be solved 
with the Master 
Theorem

• But we will solve 
it here more 
informally/easily



TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION (2) --
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𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑐𝑐

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 2𝑐𝑐

𝑛𝑛
2

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 22𝑐𝑐

𝑛𝑛
22

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 2𝑘𝑘−1𝑐𝑐
𝑛𝑛

2𝑘𝑘−1

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑐𝑐

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 𝑐𝑐𝑐𝑐

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 𝑐𝑐𝑐𝑐

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 𝑐𝑐𝑐𝑐

• Sum of left terms = sum of right terms
• Cancel terms that occur on both sides of “=“
• What remains on the left is: 𝑇𝑇 𝑛𝑛
• What remains on the right: 2𝑘𝑘𝑇𝑇 𝑛𝑛

2𝑘𝑘
+ 𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑛𝑛 1 + 𝑐𝑐𝑐𝑐𝑐𝑐

• Therefore: 𝑇𝑇 𝑛𝑛 = 𝑛𝑛𝑛𝑛 1 + 𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐+ 𝑐𝑐𝑐𝑐 log𝑛𝑛 = 𝑂𝑂 𝑛𝑛 log𝑛𝑛

• 𝑻𝑻 𝒏𝒏 = 𝑶𝑶 𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏



SECOND APPLICATION OF D&C
-- QUICKSORT --

• This time we partition the input A[1:n] around an element in 
input A[1:n], say 𝑎𝑎 = 𝐴𝐴 1 , such that, after the partitioning:

• All the input elements that are ≤ 𝑎𝑎 are put in the first (left) 
partition

• All the input elements that are > 𝑎𝑎 are put in the second (right) 
partition

Input  A: 

After partitioning around 𝑎𝑎: 

• Partitioning takes O(n) time
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𝑎𝑎

𝑎𝑎

≤ 𝑎𝑎 > 𝑎𝑎



SECOND APPLICATION OF D&C
-- QUICKSORT ALGORITHM --
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Procedure Quicksort(in/out A[1,n];in: p,q)  // sorts A[p:q]
// The sorting is in situ, i.e., in place (within the same input array A
begin

int r;
if (p==q) then return; endif // if one element to sort, then sorted
r := partition(A[p:q]); // r is the index where the partitioning 

// element (p.a.) lands, i.e., now A[r]==p.a.
Quicksort(A[p:r-1]); // now A[p:r-1] is sorted, and all are ≤ 𝑎𝑎
Quicksort(A[r+1:q); // now A[r+1:q] is sorted, and all are > 𝑎𝑎

end
At the end of the algorithm, A[p:q] is sorted, because:
• A[p:r-1] is sorted and all are ≤ 𝑎𝑎 => A[p] ≤A[p+1] ≤… ≤A[r-1] ≤ 𝑎𝑎 = A[r]
• A[r+1:q] is sorted, and all are > 𝑎𝑎 => 𝑎𝑎 <A[r+1] ≤A[r+2] ≤… ≤A[q]
• Therefore: A[p] ≤A[p+1] ≤… ≤A[r-1] ≤ 𝑎𝑎 = A[r]<A[r+1] ≤A[r+2] ≤… ≤A[q]



TIME COMPLEXITY OF QUICKSORT

• Let 𝑇𝑇(𝑛𝑛) be the time of Quicksort(A[1,n];1,n)

• 𝑇𝑇(𝑛𝑛)= (time of partition)+(time of Quicksort(A[1:n];1,r-1])) +  

(time of Quicksort(A[1:n];r+1,n]))

• 𝑇𝑇 𝑛𝑛 = 𝑐𝑐𝑐𝑐 + 𝑇𝑇 𝑟𝑟 − 1 + 𝑇𝑇(𝑛𝑛 − 𝑟𝑟)

• This is a recurrence relation, but we don’t know r

• Worst-case time complexity: 
• 𝑟𝑟 = 1 (i.e., partitioning is extremely unbalanced)

• 𝑇𝑇 𝑛𝑛 = 𝑐𝑐𝑐𝑐 + 𝑇𝑇 1− 1 + 𝑇𝑇 𝑛𝑛 − 1 = 𝑐𝑐𝑐𝑐 + 𝑇𝑇 0 + 𝑇𝑇 𝑛𝑛 − 1

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑐𝑐
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TIME COMPLEXITY OF QUICKSORT
-- WORST-CASE ANALYSIS --

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑐𝑐
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𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑐𝑐
𝑇𝑇 𝑛𝑛 − 1 = 𝑇𝑇 𝑛𝑛 − 2 + 𝑐𝑐(𝑛𝑛 − 1)
𝑇𝑇 𝑛𝑛 − 2 = 𝑇𝑇 𝑛𝑛 − 3 + 𝑐𝑐(𝑛𝑛 − 2)
……
𝑇𝑇 1 = 𝑇𝑇 0 + 𝑐𝑐. 1 = 𝑐𝑐. 1

• Sum of left terms = sum of right terms
• Cancel terms that occur on both sides of “=“
• What remains on the left is: 𝑇𝑇 𝑛𝑛
• What remains on the right: 𝑐𝑐(1 + 2 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛)
• Therefore: 𝑇𝑇 𝑛𝑛 = 𝑐𝑐 1 + 2 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛 = 𝑐𝑐𝑐𝑐(𝑛𝑛 + 1)/2
• Conclusion: 𝑻𝑻 𝒏𝒏 = 𝑶𝑶(𝒏𝒏𝟐𝟐), which is bad!

The lines in the left box are all 
derived by applying  the top 
recurrence relations at different 
values: 𝑇𝑇 𝑚𝑚 = 𝑇𝑇 𝑚𝑚 − 1 + 𝑐𝑐𝑐𝑐
for 𝑚𝑚 = 𝑛𝑛,𝑛𝑛 − 1,𝑛𝑛 − 2, … , 1.

•Cannot be solved with the Master Theorem b/c the 
latter doesn’t apply to this kind of recurrence relation

•We’ll solve it using the informal unfolding method



TIME COMPLEXITY OF QUICKSORT
-- AVERAGE-CASE ANALYSIS --

• Irony: Quicksort is slow in the worst case (𝑶𝑶(𝒏𝒏𝟐𝟐)) yet it is called 
Quicksort 

• Reality: In practice, Quicksort is the fastest sorting algorithm 
around, faster even than Mergesort (which takes O(n log n) time < 
𝑶𝑶(𝒏𝒏𝟐𝟐))

• So, what is going on?

• Well, the worst case occurs when the input happens to be already 
sorted (or nearly sorted), but that rarely happens

• In practice, the input is in random order
• So, the question is: What happens if we have average input

• We need to perform “average-case” time complexity analysis

CS 6212 Design and Analysis of Algorithms                                                                                    Divide & Conquer

27



AVERAGE-CASE ANALYSIS OF QUICKSORT (1)

• Recall the general recurrence relation: 
𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑟𝑟 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑟𝑟 + 𝑐𝑐𝑐𝑐

where 𝑟𝑟 can be 1 or 2 or … or 𝑛𝑛

• Thus, 𝑇𝑇 𝑛𝑛 can be:
• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 0 + 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑐𝑐, or

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 1 + 𝑇𝑇 𝑛𝑛 − 2 + 𝑐𝑐𝑐𝑐, or

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 2 + 𝑇𝑇 𝑛𝑛 − 3 + 𝑐𝑐𝑐𝑐, or

• ………

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑇𝑇 0 + 𝑐𝑐𝑐𝑐
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• So, the average value of T(n) is the average of 
those n possible values, i.e., (the sum of those 
values)/n

• Thus, the sum is:
2[𝑇𝑇(0) + 𝑇𝑇(1) + 𝑇𝑇(2) +⋯ 𝑇𝑇(𝑛𝑛 − 1)] + 𝑐𝑐𝑐𝑐. 𝑛𝑛

• As you sum, group the terms as shown left



AVERAGE-CASE ANALYSIS OF QUICKSORT (2)

• Therefore, the average of 𝑇𝑇 𝑛𝑛 , denoted 𝑇𝑇𝐴𝐴 𝑛𝑛 , is:
• 𝑇𝑇𝐴𝐴 𝑛𝑛 = sum/𝑛𝑛

• 𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑐𝑐.𝑛𝑛 /𝑛𝑛

• 𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2 /𝑛𝑛

• Multiplying both sides by 𝑛𝑛, we get

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2
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AVERAGE-CASE ANALYSIS OF QUICKSORT (3)

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 +⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2

• Since we are considering average time, we can assume that each 𝑇𝑇 𝑖𝑖 on the 
right (which is a recursive call on an average part) to be an average time 𝑇𝑇𝐴𝐴 𝑖𝑖

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇𝐴𝐴 1 + 𝑇𝑇𝐴𝐴 2 + ⋯+ 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2

• Applying the formula above at 𝑛𝑛 − 1, we get

• 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 = 2 𝑇𝑇𝐴𝐴 1 + 𝑇𝑇𝐴𝐴 2 + ⋯+ 𝑇𝑇𝐴𝐴 𝑛𝑛 − 2 + 𝑐𝑐(𝑛𝑛 − 1)2

• Subtracting the last two equations, we obtain:
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 − 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 = 2𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2 − 𝑐𝑐(𝑛𝑛 − 1)2

• Performing some arithmetic, we get:
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑐𝑐 − 𝑐𝑐
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑐𝑐 − 𝑐𝑐
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑐𝑐 (because we got rid of  −𝑐𝑐)
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AVERAGE-CASE ANALYSIS OF QUICKSORT (4)

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑐𝑐

• Divide both sides by 𝑛𝑛 𝑛𝑛 + 1 , we get:

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛 𝑛𝑛+1

≤ 𝑛𝑛+1 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

+ 2𝑐𝑐𝑐𝑐
𝑛𝑛 𝑛𝑛+1

• 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

≤ 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

• Calling 𝒇𝒇 𝒏𝒏 = 𝑻𝑻𝑨𝑨 𝒏𝒏
𝒏𝒏+𝟏𝟏

, and thus 𝑓𝑓 𝑛𝑛 − 1 = 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛

, the above 

equation becomes:

• 𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1
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AVERAGE-CASE ANALYSIS OF QUICKSORT (5)

• 𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

, where 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

(𝑓𝑓 0 = 𝑇𝑇𝐴𝐴 0
0+1

= 0)
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𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 +
2𝑐𝑐
𝑛𝑛+ 1

𝑓𝑓 𝑛𝑛 − 1 ≤ 𝑓𝑓 𝑛𝑛− 2 +
2𝑐𝑐
𝑛𝑛

𝑓𝑓 𝑛𝑛 − 2 ≤ 𝑓𝑓 𝑛𝑛− 3 +
2𝑐𝑐
𝑛𝑛 − 1

…………….

𝑓𝑓 1 ≤ 𝑓𝑓 0 +
2𝑐𝑐
2

The lines in the left box are all 
derived by applying  the top 
recurrence relations at different 
values: 𝑓𝑓 𝑚𝑚 ≤ 𝑓𝑓 𝑚𝑚 − 1 + 2𝑐𝑐

𝑚𝑚+1
for 

𝑚𝑚 = 𝑛𝑛,𝑛𝑛 − 1,𝑛𝑛 − 2, … , 1.

• Sum of left terms ≤ sum of right terms
• Cancel terms that occur on both sides of “≤“
• What remains on the left is: 𝑓𝑓 𝑛𝑛
• What remains on the right:𝑓𝑓 0 + 2c(1

2
+ 1

3
+ ⋯+ 1

𝑛𝑛
+ 1

𝑛𝑛+1
)

• Therefore:𝑓𝑓 𝑛𝑛 ≤ 2c(1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

) note: 𝑓𝑓 0 =0



AVERAGE-CASE ANALYSIS OF QUICKSORT (6)

• 𝑓𝑓 𝑛𝑛 ≤ 2c(1
2

+ 1
3

+⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

), where 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

• From Calculus, 1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

≤ Ln 𝑛𝑛 + 1 = 𝑂𝑂(log𝑛𝑛)

• Therefore, 𝑓𝑓 𝑛𝑛 ≤ 2c Ln 𝑛𝑛 + 1

• Since, 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

and hence 𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 + 1 𝑓𝑓 𝑛𝑛 , we get

• 𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑓𝑓 𝑛𝑛 ≤ 2𝑐𝑐 𝑛𝑛 + 1 Ln 𝑛𝑛 + 1 = 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

• Conclusion: 𝑻𝑻𝑨𝑨 𝒏𝒏 = 𝑶𝑶(𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏)
• Because the constant factor in the above big-O is < the constant 

factors of the Big-O of other sorting algorithms, Quicksort is faster 
on average than other sorting algorithms

CS 6212 Design and Analysis of Algorithms                                                                                    Divide & Conquer

33



THE PARTITION ALGORITHM

• Quicksort did some fancy partitioning

• Now we give an O(n) time in situ partition algorithm
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THE PARTITION ALGORITHM (2)
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Function Partition(in/out A[p:q])
begin

int i,j;
real a=A[p]; // a is the partitioning element
i=p; j=q;
while (i < j)  do

while (A[i] <= a && i<q) do i++;  endwhile
while (A[j] > a && j>p)  do j--; endwhile
if i < j then

swap (A[i],A[j]);  i++;   j--;
endif

endwhile
swap(A[p],A[j]);
return (j);

end  



ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4
5 8 1 9 3 14 7 10 18 4

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
5 8 1 9 3 14 7 10 18 4

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j
5 4 1 3 9 14 7 10 18 8

j i
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j

i>j
Swap(A[1], A[4])

5 4 1 3 9 14 7 10 18 8

j i
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j

i>j
Swap(A[1], A[4])

5 4 1 3 9 14 7 10 18 8

j i
Now A is partitioned 3 4 1 5 9 14 7 10 18 8
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TIME COMPLEXITY OF PARTITION

• At every step, either i moves one step right or j moves one 
step left

• After i and j meet and cross by at most one step, only 
constant-time work is done and the algorithm terminates

• So the time is proportional to the “total distance” traveled by i 
and j combined

• That traveled distance is the length of the array (no matter 
where i and j meet)

• Therefore, the time of partition is O(n)
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NEXT LECTURE

• We finish Divide and Conquer

• We apply it to the Order Statistics problem: 

• Finding the kth smallest element of an arbitrary (unsorted) 
array

• We will see a simple way of applying D&C to that problem, 
yielding a slow algorithm

• Then we apply D&C to that problem in a more sophisticated 
way, yielding a much faster algorithm
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