CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: DIVIDE & CONQUER -
PART I

Instructor: Abdou Youssef



OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:
* Describe the Divide & Conquer algorithmic design technique

 Apply the technique to designingalgorithms for an important
problem,Sorting,in two different ways

 Draw and appreciate the strong connection betweenrecursion and
Divide & Conquer

e Carry out time complexity analysis of Divide & Conquer
algorithms, by deriving and solving recurrence relations

» Perform worst-case and average-case time complexity analysis



OUTLINE

 Template for Divide and Conquer
e First Application: Mergesort

* Second Application: Quicksort



DIVIDE & CONQUER
-- GENERAL STRATEGY AND UNDERLYING PHILOSOPHY --

 The general strategyis
e Examine the size or magnitude of the input of the problem
e If small enough, solve the problem directly
e Such solutions are fairly simple, and often trivial, for small input
e If not small, divide the input into two or more (smaller) parts
* Solve the same problem on each part
e by calling the algorithm recursively on each part
e whichis a huge saving in intellectual/design effort

 Merge the subsolutions (i.e., the solutions of the parts) into a global
solution

 Merging subsolutions is usually simpler than finding a global solution from scratch



DIVIDE & CONQUER
-- TEMPLATE --

Template divide&conquer (inputI)
begin
if (size or value of input is small enough)
then
solve directly and return;
endif
divide inputl into two or more parts I, L,,...;
S, € divide&conquex(l,) ;
S, € divide&conquex(l,) ;

Merge the subsolutions S, S,,...intoa

global solution S; . .
Final Global Solution

end
CS 6212 Design and Analysis of Algorithms Divide & Conquer 5



FIRST APPLICATION
-- SORTING --

e The Sorting problem:

e Input: An arbitrary array of numbers
e or array of any data type for which we have a comparator like <

 Output: the same input but in increasing order (from min to max)

 Goal: Apply Divide & Conquer to design an algorithm for sorting

* Note: we can sort into decreasing order (from max to min)

e simply change < to >



FIRST APPLICATION
-- SORTING REMARKS --

e Sortingis one of the oldest problemsin CS
e Sorting algorithms are among the most widely used in IT
 Many sorting algorithms have been developed

» “First-generation” sorting algorithms take O(n?) time, which is
relatively slow, especially for large n

e Some 1%t gen sorting algs: insertion sort, selection sort, exchange sort

e Divide & Conquer sorting algorithms are much faster, as will be
seen in this lecture



FIRST APPLICATION
-- MERGESORT --

Proc. Mergesort (inA[1:n],1,j;out B[1:n])
// sorts A[i:j] to B[i:j]
begin
generic C[1l:n];// same type as A
if i==j then B[i] = A[i]; Return; endif
Mergesort (A,i,(i+))/2;C);// sorts 15t half
Mergesort(A,(itj)/2 +1,j;C); // sorts 274 half
Merge(C,1,j;B); // merges the two sorted
// halves into a single sorted array
end Mergesort

To sort whole array: call Mergesort (A,1,n;B)
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Procedure Merge(in C i,j; out B)
// mexges C[i:k] and C[k+1:j] into B[i:j]
// k=(it+j)/2
begin
int k=(i+j)/2,u=i, v=k+1, w=u;
// u scans CJ[i:k], vscans C[k+1:j]
// w indexes B
while (u<=kand v <=j)do
if C[u] <= C[v] then B[w++]=C[u++];
else B[w++]=C[v++];
endif
endwhile
if u > k then B[w:j] = C[v:j];
elseif v>j then B[w:j] = C[u:Kk];
endif

end Merge

Divide & Conquer




EXPLANATION OF MERGE

e Input: Two sorted arrays *

135189 I*IEIIEIIIIH

1. Compare heads
Move smaller value to the output
Move forward the smaller head

Repeat 1-3 until one input half is empty

o & Db

Move remainder of other half to output

Output d |
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e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

-élﬂﬂﬂ élnmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output - .

10

CS 6212 Design and Analysis of Algorithms Divide & Conquer



e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

--éﬂﬂ élnmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output - EE .
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e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

--éﬂﬂ -élmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output gd:3.4+ |||
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e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

---éﬂ -élmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g:l314/5 | | | | |
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e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

---éﬂ --ILIIIIE

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g:l31415170 | | | |
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e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

----:l --ILIIIIE

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g:l314/517/8] | | |
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e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

-----* --ILIIIIE

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g 1l3/4/5/7]/8/9] | |
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EXPLANATION OF MERGE

e Input: Two sorted arrays * *

1. Compare heads
Move smaller value to the output
Move forward the smaller head

Repeat 1-3 until one input half is empty

o & Db

Move remainder of other half to output

Output g ! 3/4/5/7/8/9/10/1418

17
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ILLUSTRATION OF MERGESORT
-- WHAT GOES ON INSIDE THE COMPUTER --

Divide <

N

Merge ~<

N
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9 14| 7 |10|18| 4 e This is what goes
' / \[‘ on inside the
14| 7 |10|18] 4 computer when
\ executing
14| 7 10(18| 4 Metgesort
. / . \ / - . But, don’t do that
3 14 7| |10 18| 4 “at home”
| \ / | \ Rather, ... (see
3 18 a next slide)
1 [
s 2 |18
r !
7 |14 4 |10|18
|
!
4|7 |10|14|18
|
5 8 |9 [10]14]18 18

Divide & Conquer



THE “BOSS-VIEW” OF MERGESORT

Proper Mindset:
1. Divide data into

parts _ 5|8|1|9|3|14|7 |10|18| 4
2. Then, as a boss, | / i .
M,
hand each part to a 5|8|1|0]3 14| 7 [10]18] 4
clone-subordinate

3. Wait for each
subordinate to
come back with its
sub-solution

4. Then, as the boss, Recursive Call Re :
you take the sub- (clone-subordinate) one hordinate
solutions and
merge into a
global solution

5. As as boss,you
take the credit!

e NEVER | |

MICROMANAGE ‘
your subordinates




TIME COMPLEXITY OF MERGESORT
-- DERIVING A RECURRENCE RELATION --

 Time of Merge: O(n)=cn, for some constant ¢, because:
o After each comparison, the input loses one element

* Once the input loses all its elements (after < n comparisons), it is
done

e Time of Mergesort:
e Let T(n) be the time of Mergesort of n elements
e T(n) = (time of each Mergesort on n/2 elements)+(time of Merge)
e T(n) = 2T (g) + cn, T(1)=constant=c

e The above is called a recurrence relation



TIME COMPLEXITY OF MERGESORT posvwes
-- SOLVING THE RECURRENCE RELATION --[iilitass

Theorem

e But we will solve

n k it here more
e T(n) =2T (5) + cn, T(l)=constant=c. Assumen = 2 informally/easily
n n
T(n) = 2T (E) + cn T(n) = 2T (E) ‘;CTl )
n n n
i = 2T = 2?T (=) + 2c=
T(Z) 2T(22)+cz (221 (2221+ 7
n n n 2 (" —_ o3 (__ 2 A
T(ﬁ)‘ZT(Zs)JFCﬁ 2T(22)_2 T(23)+2 ¢
o n n k-1 N _ ok (1 k-1,
T (Zk—l) = 2T (Zk) T 2k—1 ol (Zk—l) =271 (Zk) AT 2k-1
e Eachline above came from
applying the recurrence relation
on some%,fori =01, 2,...k—1
 Multiply each i*" line above by 2! .
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TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION (2) --

T(n)=2T(g)+cn T(n)=2/T6lZf+cn

n
2T(2)_22T(22)+2cE ) »y@:%z+cn
22T(22) - 23T(23)+22c? 22T ;23{(?)+cn

iy (2,?_1) = 2k (zk) + 25 le 2%1{—1) = 247 (o) + en

e Sum of left terms = sum of right terms
 Cancel terms that occur on both sides of “‘=*
« What remains on the leftis:T(n)

« What remains on the right: 25T ( ) + cnk =nT(1) + cnk
Therefore:T(n) = nT(1) + cnk = cn + cnlogn = O(nlogn)

. T(n) = 0(nlogn) .
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SECOND APPLICATION OF D&C
-- QUICKSORT --

e This time we partition the input A[l:n] around an element in
input A[1:n], say a = A|1], such that, after the partitioning:
e All the input elements thatare < a are put in the first (left)
partition
e All the input elementsthatare > a are put in the second (right)

partition

Input A: AN EEEENEDBE

After partitioning around a: <- -)) la| @

e Partitioning takes O(n) time

23
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SECOND APPLICATION OF D&C
-- QUICKSORT ALGORITHM --

Procedure Quicksort(in/out A[l,n];in: p,q) // sorts A[p:q]
// The sorting is in situ,i.e., in place (within the same input array A
begin
intr;
if (p==q) then return; endif // if one element to sort, then sorted
r := partition(A[p:q]); // ris the index where the partitioning
// element (p.a.) lands,i.e., now A[r]==p.a.
Quicksort(A[p:x-1]); // now A[p:r-1]is sorted, and all are < a
Quicksort(A[r+1:q); // now A[r+1:q]is sorted, and all are > a
end

At the end of the algorithm, A[p:q] is sorted, because:

e Alp:r-1]is sorted and all are < a => A[p] <A[p+1] <... <A[r-1] < a = Alr]

e A[r+1l:q] is sorted, and all are > a => a <A[r+1] <A[r+2] <... <A[q]

e Therefore: A[p] <A[p+1] <...<A[r-1] <a =A[r]<A[r+1] <A[x+2] <... <A[q]




TIME COMPLEXITY OF QUICKSORT

e Let T(n) be the time of Quicksort(A[l,n];1,n)

e T(n)= (time of partition)+(time of Quicksort(A[l:n];1,r-1])) +
(time of Quicksort(A[l:n];x+1,n]))

e TM)=cn+Tr—-1)+Tn—71)

e This is a recurrence relation,but we don’t knowr

 Worst-case time complexity:
e r =1 (1.e., partitioning is extremely unbalanced)
e T(M)=cn+T(A-1)+Tn—1)=cn+TO)+T(n—1)
e T(n)=T(n—1)+cn



TIME COMPLEXITY OF QUICKSORT
-- WORST-CASE ANALYSIS --

e Cannot be solved with the Master Theorem b/c the

_ . latter doesn’t apply to this kind of recurrence relation
cT(M)=T(n—1)+cn « We’ll solve it using the informal unfolding method
T(n) % 1) +cn The lines in the left box are all

M ;Qﬂ/z) +c(n—1) derived by applying the top
/Ln/ 3) + c(n — 2) |[@== recurrence relations at different

W

—T(0)+C1=C1 form=nn—1,n-2,..,1.

e Sum of left terms = sum of right terms

e Cancel terms that occur on both sides of “=*

e What remains on the left is: T(n)

e What remains on the right:c(1+ 2+ -+ (n—1) + n)

o Therefore: T(n) =c(1+2+:-+n—-1)+n)=cn(n+1)/2

+ Conclusion: T(1) = 0(n?), which is bad!

26
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TIME COMPLEXITY OF QUICKSORT
-- AVERAGE-CASE ANALYSIS --

e Irony: Quicksortis slow in the worst case (0(n?)) yet it is called
Quicksort

* Reality:In practice,Quicksort is the fastest sorting algorithm
around, faster even than Mergesort (which takes O(n logn) time <
0(n%))

e 5o, what is going on?

 Well, the worst case occurs when the input happensto be already
sorted (or nearly sorted), but that rarely happens

e In practice,the inputis in random order
* S0, the question is: What happens if we have average input

« We need to perform “average-case’ time complexity analysis



AVERAGE-CASE ANALYSIS OF QUICKSORT (1)

e Recall the general recurrence relation:
Tm)=Tr—1)+Tn—-r)+cn

wherercanbe lor2or...orn

e Thus, T(n) can be:

° T(n) —
° T(n) —

\

T(0)
T(1)
T(2)
1 1)

_|_
_|_
_|_
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f(n — 1?
T(n—2)
T(n—3)
UORy

_|_

tn

* So,the average value of T(n) is the average of

those n possible values,i.e., (the sum of those
values)/n

or
’ e As you sum,group the terms as shown left

e Thus, the sumis:

tn

2[ITO)+T(D)+TR2)+---T(n—1)]+cn.n

Divide & Conquer



AVERAGE-CASE ANALYSIS OF QUICKSORT (2)

e Therefore, the average of T (n), denoted T4 (n), is:
e T,(n) =sum/n
e Ty(n) = :Z(T(l) +TR2)+ -+ T(n — 1)) + cn.n]/n
e T,(n) =2(T(V) +TQ2)+ -+ T —1)) + cn?|/n

e Multiplying both sides by n, we get
e nTy(n) = 2(T(1) +T(2) + -+ T(n — 1)) + cn?



AVERAGE-CASE ANALYSIS OF QUICKSORT (3)

nT,(n) =2(T(D)+T(2)+ -+ T(n—1)) + cn?

Since we are consideringaverage time, we can assume that each T (i) on the

right (whichis a recursive call on an average part) to be an average time T,(i)
e nTy(n) = Z(TA(l) +T4(2)+ -+ Ty(n— 1)) + cn?

Applying the formulaabove at n — 1, we get

e (n—DTy(n—1) =2(Ty(1) + T4(2) + -+ Ty(n — 2)) + c(n — 1)?
Subtracting the last two equations, we obtain:

e nTy(n)—(n—DTy(n—-1) = 2T4(n —1) + cn? — c(n — 1)?
Performing some arithmetic, we get:

e nTyn)=(n—1DTy(n—1) +2Ty(n—1) + 2cn — ¢

e nTyn)=n+1DTy(n—1)+2cn—c

e nTy(n) < (n+ 1)Ty(n — 1) + 2cn (because we gotrid of —c¢)



AVERAGE-CASE ANALYSIS OF QUICKSORT (4)

nTy(n) < (n+1)Ty(n—1) + 2cn
* Divide both sides by n(n + 1), we get:

. nT 4(n) < (n+1)T4(n—1) 2cn

nn+1) — n(n+1) n(n+1)
, Ta(m) < TA(n—l)_l_Z_c
n+1 n n+1
e Calling f(n) = T;‘fi), and thus f(n—1) = TA(Z_D, the above

equation becomes:

c f) < fn—1) +



AVERAGE-CASE ANALYSIS OF QUICKSORT (5)

2¢ Ta(n) T 4(0)
CFO) < f(n—1) + 25, where f(n) = A% (p(0) = 42 _ )
2C
(n) < +

/ M 72’”‘ 1 The lines in the left box are all

c . .
,ﬂen—/l) < M +— derived by applying the top

y) e TECUITENCE relations at different
m < M ;L 2¢

n—1 values: f(m) < f(m— 1) + for

e T eh / m+1
s 2 m=nn—1n-2,..,1.

e Sum of left terms < sum of right terms
 Cancel terms that occur on both sides of “<*
 What remains on the left is: f(n)

e What remains on the right:f(0) + ZC(% + % + .-+ % + L)

n+1

» Therefore:f(n) < ZC(% + % + .- + % + nlj) note: f(0)=0




AVERAGE-CASE ANALYSIS OF QUICKSORT (6)

Ta(n)
n+1

1 1 1 1
*f) s 2c(G g4+ o+ ), where f(n) =

e From Calculus,l +i4.-4+-+—<Ln (n+1) =0(ogn)
2 3 n n+l

e Therefore,f(n) < 2cLn(n+ 1)
e Since, f(n) = 40 and hence T () =Mm+1)f(n),we get

n+1
e Ty <+ 1)f(n) £ 2c(n+1Ln(n+ 1) = 0(nlogn)

e Conclusion:T 4(n) = O(nlogn)

* Because the constantfactor in the above big-0 is < the constant
factors of the Big-O of other sorting algorithms, Quicksort is faster
on average than other sorting algorithms



THE PARTITION ALGORITHM

e Quicksort did some fancy partitioning

* Now we give an O(n) time in situ partition algorithm



THE PARTITION ALGORITHM (2)

Function Partition(in/out A[p:q])
begin
int 1,j;
real a=A[p]; // a is the partitioning element
i=p;j=q;
while (i <j) do
while (A[i] <= a && i<q) do i++; endwhile
while (A[j] > a && j>p) do j--; endwhile
ifi <jthen
swap (A[i],A[i]); it++; j--;
endif
endwhile
swap (A[p].A[]);
return (j);
end



ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5

P T

1
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5

8>5, 4<5 T T
. ]

1
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8 18 4
8 9 3 'Z 10 18 4
8>5, 4<5
Swap(A[2],A[10]) T T
1 ]
4 9 3 14 7 10 18 8
: ]
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 18
9 3 'Z 10 18

4

4

Swap(A[2],A[10]) T
1 J

4 3 14 7 10 18 8

8
8
8>5, 4<5 T

b o 'CO

Gl o
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1 ]
4

b 'CO
q
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1 ]
4 3 14 7 10 18 8

b 'CO
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1 ]
4 3 14 7 10 18 8
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1 ]
4 3 14 7 10 18 8

= o '©
o T
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8
8 9 3
8>5, 4<5
Swap(A[2],A[10]) T T
1 J
4 9 8 14 7 10 18 8
9>5, 3<5
Swap(A[4],A[3]) Ti jT

5 4 1 3 9 14 7 10 18 8
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8
8 9 3
8>5, 4<5
Swap(A[2],A[10]) T T
1 ]
4 9 3 14 7 10 18 8
9>5, 3<5
Swap(A[4],A[5]) Ti jT
.. 5 4 1 3 9 14 7 10 18 8
1>]
Swap(A[1],A[4]) T T
] 1
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ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8 14 'Z 18 4
5 8 9 3 4
8>5, 4<5
Swap(A[2],A[10])
1
5 4 1 9 3 14 7 10 18 8
9>5, 3<5
Swap(A[4],A[5]) i ]
5 4 1 3 9 14 7 10 18 8

1>]
Swap(A[l],A[4])

¢
et o

Now A is partitioned 3 4 1

©

14 7 10 18 8
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TIME COMPLEXITY OF PARTITION

e At every step, either 1 moves one step right or j moves one
step left

e After 1 and j meet and cross by at most one step, only
constant-time work is done and the algorithm terminates

* So the time is proportional to the “total distance” traveled by 1
and j combined

e That traveled distance is the length of the array (no matter
where 1 and ] meet)

e Therefore, the time of partition is O(n)



NEXT LECTURE

 We finish Divide and Conquer

« We apply it to the Order Statistics problem:
e Finding the k" smallest element of an arbitrary (unsorted)

array

 We will see a simple way of applying D&C to that problem,
ylelding a slow algorithm

 Then we apply D&C to that problem in a more sophisticated
way, ylelding a much faster algorithm
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