CS 6212 DESIGN AND ANALYSIS OF ALGORITHMS

LECTURE: DIVIDE & CONQUER -PART I

Instructor: Abdou Youssef

Divide & Conquer

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Describe the Divide & Conquer algorithmic design technique
- Apply the technique to designing algorithms for an important problem, Sorting, in two different ways
- Draw and appreciate the strong connection between recursion and Divide & Conquer
- Carry out time complexity analysis of Divide & Conquer algorithms, by deriving and solving recurrence relations
- Perform worst-case and average-case time complexity analysis

OUTLINE

- Template for Divide and Conquer
- First Application: Mergesort
- Second Application: Quicksort

DIVIDE & CONQUER

- -- <u>GENERAL STRATEGY</u> AND <u>UNDERLYING PHILOSOPHY</u> --
- The general strategy is
 - Examine the size or magnitude of the input of the problem
 - If small enough, solve the problem directly
 - Such solutions are fairly simple, and often trivial, for small input
 - If not small, divide the input into two or more (smaller) parts
 - Solve the same problem on each part
 - by calling the algorithm recursively on each part
 - which is a huge saving in intellectual/design effort
 - Merge the subsolutions (i.e., the solutions of the parts) into a global solution
 - Merging subsolutions is usually simpler than finding a global solution from scratch

4

DIVIDE & CONQUER -- TEMPLATE --

Template divide&conquer (input I)

begin

if (size or value of input is small enough)
then

solve directly and **return**;

endif

<u>divide</u> input I into two or more parts $I_1, I_2, ...;$

- $S_1 \leftarrow divide\&conquer(I_1);$
- $S_2 \leftarrow divide\&conquer(I_2);$

Merge the subsolutions S₁, S₂,...into a global solution S;

end

.....

FIRST APPLICATION -- SORTING --

- The Sorting problem:
 - **Input**: An arbitrary array of numbers
 - or array of any data type for which we have a comparator like \leq
 - **Output**: the same input but in increasing order (from min to max)

• Goal: Apply Divide & Conquer to design an algorithm for sorting

- Note: we can sort into decreasing order (from max to min)
 - simply change \leq to \geq

FIRST APPLICATION -- SORTING REMARKS --

- Sorting is one of the oldest problems in CS
- Sorting algorithms are among the most widely used in IT
- Many sorting algorithms have been developed
- "First-generation" sorting algorithms take O(n²) time, which is relatively slow, especially for large n
- Some 1st gen sorting algs: *insertion sort*, *selection sort*, *exchange sort*
- Divide & Conquer sorting algorithms are much faster, as will be seen in this lecture

FIRST APPLICATION -- MERGESORT--

Proc. Mergesort (in A[1:n], i, j; out B[1:n])
// sorts A[i:j] to B[i:j]
begin

To sort whole array: call Mergesort (A, l, n; B)

Procedure Merge(in C i, j; out B) // merges C[i:k] and C[k+1:j] into B[i:j] //k=(i+j)/2begin int k=(i+j)/2, u=i, v=k+1, w=u; // u scans C[i:k], v scans C[k+1:j] //windexes B while $(u \le k \text{ and } v \le j)$ do if $C[u] \le C[v]$ then B[w++]=C[u++]; else B[w++]=C[v++]; endif endwhile if u > k then B[w:j] = C[v:j];elseif v>j then B[w:j] = C[u:k]; endif end Merge

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

- Input: Two sorted arrays
- 1. Compare heads
- 2. Move smaller value to the output
- 3. Move forward the smaller head
- 4. Repeat 1-3 until one input half is empty
- 5. Move remainder of other half to output

ILLUSTRATION OF MERGESORT -- WHAT GOES ON INSIDE THE COMPUTER --

- This is what goes on inside the computer when executing Metgesort
- But, <u>don't do</u> that "at home"
- Rather, ... (see next slide)

THE "BOSS-VIEW" OF MERGESORT

Proper Mindset:

- 1. Divide data into parts
- 2. Then, as a boss, hand each part to a clone-subordinate
- 3. Wait for each subordinate to come back with its sub-solution
- 4. Then, as the boss, you take the subsolutions and merge into a global solution
- 5. As as boss, you take the credit!
- NEVER MICROMANAGE your subordinates

TIME COMPLEXITY OF MERGESORT -- DERIVING A RECURRENCE RELATION --

- Time of Merge: O(n)=cn, for some constant c, because:
 - After each comparison, the input loses one element
 - Once the input loses all its elements (after ≤ n comparisons), it is done
- Time of Mergesort:
 - Let T(n) be the time of Mergesort of n elements
 - T(n) = (time of each Mergesort on n/2 elements)+(time of Merge)

•
$$T(n) = 2T\left(\frac{n}{2}\right) + cn$$
, $T(1)=\text{constant}=c$

• The above is called a recurrence relation

TIME COMPLEXITY OF MERGESORT -- SOLVING THE RECURRENCE RELATION (2) --

$$T(n) = 2T\left(\frac{n}{2}\right) + cn$$

$$2T\left(\frac{n}{2}\right) = 2^2T\left(\frac{n}{2^2}\right) + 2c\frac{n}{2}$$

$$2^2T\left(\frac{n}{2^2}\right) = 2^3T\left(\frac{n}{2^3}\right) + 2^2c\frac{n}{2^2}$$

...

$$2^{k-1}T\left(\frac{n}{2^{k-1}}\right) = 2^kT\left(\frac{n}{2^k}\right) + 2^{k-1}c\frac{n}{2^{k-1}}$$

$$T(n) = 2T\left(\frac{n}{2}\right) + cn$$

$$2T\left(\frac{n}{2}\right) = 2^2T\left(\frac{n}{2^2}\right) + cn$$

$$2^2T\left(\frac{n}{2^2}\right) = 2^2T\left(\frac{n}{2^3}\right) + cn$$

...

$$2^{k-1}T\left(\frac{n}{2^{k-1}}\right) = 2^kT\left(\frac{n}{2^k}\right) + cn$$

- Sum of left terms = sum of right terms
- Cancel terms that occur on both sides of "="
- What remains on the left is: T(n)
- What remains on the right: $2^k T\left(\frac{n}{2^k}\right) + cnk = nT(1) + cnk$
- Therefore: $T(n) = nT(1) + cnk = cn + cn\log n = O(n\log n)$
- $T(n) = O(n \log n)$

SECOND APPLICATION OF D&C -- QUICKSORT --

- This time we partition the input A[1:n] around an element in input A[1:n], say a = A[1], such that, after the partitioning:
 - All the input elements that are $\leq a$ are put in the first (left) partition
 - All the input elements that are > a are put in the second (right) partition
 - Input A: After partitioning around a:
- Partitioning takes O(n) time

SECOND APPLICATION OF D&C -- QUICKSORT ALGORITHM --

Procedure Quicksort(in/out A[1,n];in: p,q) // sorts A[p:q]
// The sorting is in situ, i.e., in place (within the same input array A
begin

intr;

At the end of the algorithm, A[p:q] is sorted, because:

- A[p:r-1] is sorted and all are $\leq a \Rightarrow A[p] \leq A[p+1] \leq ... \leq A[r-1] \leq a = A[r]$
- A[r+1:q] is sorted, and all are $> a \Rightarrow a < A[r+1] \le A[r+2] \le \dots \le A[q]$
- Therefore: $A[p] \leq A[p+1] \leq ... \leq A[r-1] \leq a = A[r] \leq A[r+1] \leq A[r+2] \leq ... \leq A[q]$

TIME COMPLEXITY OF QUICKSORT

- Let T(n) be the time of Quicksort(A[1,n];1,n)
- T(n)= (time of partition)+(time of Quicksort(A[1:n];1,r-1])) + (time of Quicksort(A[1:n];r+1,n]))

•
$$T(n) = cn + T(r-1) + T(n-r)$$

- This is a recurrence relation, but we don't know r
- Worst-case time complexity:
 - r = 1 (i.e., partitioning is extremely unbalanced)
 - T(n) = cn + T(1-1) + T(n-1) = cn + T(0) + T(n-1)
 - T(n) = T(n-1) + cn

TIME COMPLEXITY OF QUICKSORT -- WORST-CASE ANALYSIS --

•
$$T(n) = T(n-1) + cn$$

$$T(n) = T(n-1) + cn$$

$$T(n-1) = T(n-2) + c(n-1)$$

$$T(n-2) = T(n-3) + c(n-2)$$

.....

$$T(1) = T(0) + c.1 = c.1$$

Cannot be solved with the Master Theorem b/c the latter doesn't apply to this kind of recurrence relation
We'll solve it using the informal unfolding method

> The lines in the left box are all derived by applying the top recurrence relations at different values: T(m) = T(m-1) + cmfor m = n, n - 1, n - 2, ..., 1.

- Sum of left terms = sum of right terms
- Cancel terms that occur on both sides of "="
- What remains on the left is: T(n)
- What remains on the right: $c(1 + 2 + \dots + (n 1) + n)$
- Therefore: $T(n) = c(1 + 2 + \dots + (n 1) + n) = cn(n + 1)/2$
- Conclusion: $T(n) = O(n^2)$, which is bad!

TIME COMPLEXITY OF QUICKSORT -- AVERAGE-CASE ANALYSIS --

- **Irony**: Quicksort is slow in the worst case $(O(n^2))$ yet it is called **Quick**sort
- **Reality**: In practice, Quicksort is the fastest sorting algorithm around, faster even than Mergesort (which takes O(n log n) time < $O(n^2)$)
- So, what is going on?
- Well, the worst case occurs when the input happens to be already sorted (or nearly sorted), but that rarely happens
- In practice, the input is in random order
 - So, the question is: What happens if we have **average input**
- We need to perform "average-case" time complexity analysis

27

AVERAGE-CASE ANALYSIS OF QUICKSORT (1)

• Recall the general recurrence relation:

$$T(n) = T(r-1) + T(n-r) + cn$$

where r can be 1 or 2 or ... or n

• Thus, T(n) can be:

•
$$T(n) = T(0) + T(n-1) + cn$$
, or
• $T(n) = T(1) + T(n-2) + cn$, or

- T(n) = T(2) + T(n-3) + cn, or

•
$$T(n) = T(n-1) + T(0) + cn$$

- So, the average value of T(n) is the average of those n possible values, i.e., (the sum of those values)/n
- As you sum, group the terms as shown left

• Thus, the sum is: $2[T(0) + T(1) + T(2) + \cdots T(n-1)] + cn.n$

28

AVERAGE-CASE ANALYSIS OF QUICKSORT (2)

- Therefore, the average of T(n), denoted $T_A(n)$, is:
 - $T_A(n) = \operatorname{sum}/n$
 - $T_A(n) = [2(T(1) + T(2) + \dots + T(n-1)) + cn.n]/n$
 - $T_A(n) = \left[2(T(1) + T(2) + \dots + T(n-1)) + cn^2\right]/n$
- Multiplying both sides by n, we get
 - $nT_A(n) = 2(T(1) + T(2) + \dots + T(n-1)) + cn^2$

AVERAGE-CASE ANALYSIS OF QUICKSORT (3)

- $nT_A(n) = 2(T(1) + T(2) + \dots + T(n-1)) + cn^2$
- Since we are considering average time, we can assume that each T(i) on the right (which is a recursive call on an average part) to be an average time $T_A(i)$
 - $nT_A(n) = 2(T_A(1) + T_A(2) + \dots + T_A(n-1)) + cn^2$
- Applying the formula above at n-1, we get
 - $(n-1)T_A(n-1) = 2(T_A(1) + T_A(2) + \dots + T_A(n-2)) + c(n-1)^2$
- Subtracting the last two equations, we obtain:
 - $nT_A(n) (n-1)T_A(n-1) = 2T_A(n-1) + cn^2 c(n-1)^2$
- Performing some arithmetic, we get:
 - $nT_A(n) = (n-1)T_A(n-1) + 2T_A(n-1) + 2cn c$
 - $nT_A(n) = (n+1)T_A(n-1) + 2cn c$
 - $nT_A(n) \le (n+1)T_A(n-1) + 2cn$ (because we got rid of -c)

AVERAGE-CASE ANALYSIS OF QUICKSORT (4)

•
$$nT_A(n) \le (n+1)T_A(n-1) + 2cn$$

• Divide both sides by n(n + 1), we get:

•
$$\frac{nT_A(n)}{n(n+1)} \le \frac{(n+1)T_A(n-1)}{n(n+1)} + \frac{2cn}{n(n+1)}$$

• $\frac{T_A(n)}{n+1} \le \frac{T_A(n-1)}{n} + \frac{2c}{n+1}$

• Calling $f(n) = \frac{T_A(n)}{n+1}$, and thus $f(n-1) = \frac{T_A(n-1)}{n}$, the above equation becomes:

•
$$f(n) \le f(n-1) + \frac{2c}{n+1}$$

AVERAGE-CASE ANALYSIS OF QUICKSORT (5)

•
$$f(n) \le f(n-1) + \frac{2c}{n+1}$$
, where $f(n) = \frac{T_A(n)}{n+1}$ $(f(0) = \frac{T_A(0)}{0+1} = 0)$

The lines in the left box are all derived by applying the top recurrence relations at different values: $f(m) \le f(m-1) + \frac{2c}{m+1}$ for m = n, n - 1, n - 2, ..., 1.

- Sum of left terms \leq sum of right terms
- Cancel terms that occur on both sides of "≤"
- What remains on the left is: f(n)
- What remains on the right: $f(0) + 2c(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1})$
- Therefore: $f(n) \le 2c(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1})$ note: f(0)=0

AVERAGE-CASE ANALYSIS OF QUICKSORT (6)

- $f(n) \le 2c(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1})$, where $f(n) = \frac{T_A(n)}{n+1}$
- From Calculus, $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} \le \ln(n+1) = O(\log n)$

• Therefore,
$$f(n) \leq 2c \operatorname{Ln} (n+1)$$

• Since, $f(n) = \frac{T_A(n)}{n+1}$ and hence $T_A(n) = (n+1)f(n)$, we get

•
$$T_A(n) \le (n+1)f(n) \le 2c(n+1)\ln(n+1) = O(n\log n)$$

- Conclusion: $T_A(n) = O(n \log n)$
- Because the constant factor in the above big-O is < the constant factors of the Big-O of other sorting algorithms, Quicksort is faster on average than other sorting algorithms

THE PARTITION ALGORITHM

- Quicksort did some fancy partitioning
- Now we give an O(n) time *in situ* partition algorithm

THE PARTITION ALGORITHM (2)

```
Function Partition(in/out A[p:q])
begin
   int i,j;
   real a=A[p]; // a is the partitioning element
   i=p;j=q;
   while (i < j) do
       while (A[i] <= a && i<q) do i++; endwhile
       while (A[j] > a && j>p) do j--; endwhile
       if i < j then
           swap (A[i],A[j]); i++; j--;
       endif
   endwhile
   swap(A[p],A[j]);
   return (j);
end
```

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
		, ↑									j
A[1]=5											

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8~0, 4<0		i								j
A[1]=5											

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5, 4<5 Swap(A[2],A[10])		i								j
A[1]-5		5	4	1	9	3	14	7	10	18	8
A[1]=5				i						j	

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5, 4<5 Swap(A[2],A[10])		i								j
X []] - 5		5	4	1	9	3	14	7	10	18	8
A[1]=5					f					j	

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5, 4<5 Swap(A[2],A[10])		i								j
X [1] - 5		5	4	1	9	3	14	7	10	18	8
A[1]=5					Ì				j		

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5, 4<5 Swap(A[2],A[10])		i								j
A []] - 5		5	4	1	9	3	14	7	10	18	8
A[1]=5					f			f			

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5,4<5 Swap(A[2],A[10])		i								j
A[1]-5		5	4	1	9	3	14	7	10	18	8
M[1] -3					Ì		j				

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5,4<5 Swap(A[2],A[10])		, Î								j
X [1]-5		5	4	1	9	3	14	7	10	18	8
M[1]-3					f	Ĵ					

Partitioning Element	Operation				P	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5, 4<5 Swap(A[2],A[10])		i								j
X []] - 6		5	4	1	9	3	14	7	10	18	8
A[1]-5	9>5, 3<5 Swap(A[4],A[5])				1 _i	j ↑					
		5	4	1	3	9	14	7	10	18	8
					1 j	i					

Partitioning Element	Operation				A	irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5, 4<5 Swap(A[2],A[10])		i								j
X []] - 5		5	4	1	9	3	14	7	10	18	8
A[1]-5	9>5, 3<5 Swap(A[4],A[5])				↑ _i	j ↑					
	i>i	5	4	1	3	9	14	7	10	18	8
	Swap(A[1],A[4])				1 j	i					

Partitioning Element	Operation				Z	Irray	7				
	Partition(A[1:10])	5	8	1	9	3	14	7	10	18	4
		5	8	1	9	3	14	7	10	18	4
	8>5, 4<5 Swap(A[2],A[10])		i								j
X []] - 6		5	4	1	9	3	14	7	10	18	8
A[1]=5	9>5, 3<5 Swap(A[4],A[5])				↑ _i	j					
	i>i	5	4	1	3	9	14	7	10	18	8
	Swap(A[1],A[4])				↑ j	i					
	Now A is partitioned	3	4	1	5	9	14	7	10	18	8

TIME COMPLEXITY OF PARTITION

- At every step, either i moves one step right or j moves one step left
- After i and j meet and cross by at most one step, only constant-time work is done and the algorithm terminates
- So the time is proportional to the "total distance" traveled by i and j combined
 - That traveled distance is the length of the array (no matter where i and j meet)
- Therefore, the time of partition is O(n)

NEXT LECTURE

- We finish Divide and Conquer
- We apply it to the Order Statistics problem:
 - Finding the kth smallest element of an arbitrary (unsorted) array
- We will see a simple way of applying D&C to that problem, yielding a slow algorithm
- Then we apply D&C to that problem in a more sophisticated way, yielding a much faster algorithm