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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe the Divide & Conquer algorithmic design technique

• Apply the technique to designing algorithms for an important 
problem, Sorting, in two different ways

• Draw and appreciate the strong connection between recursion and 
Divide & Conquer

• Carry out time complexity analysis of Divide & Conquer 
algorithms, by deriving and solving recurrence relations

• Perform worst-case and average-case time complexity analysis
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OUTLINE

• Template for Divide and Conquer

• First Application: Mergesort

• Second Application: Quicksort
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DIVIDE & CONQUER
-- GENERAL STRATEGY AND UNDERLYING PHILOSOPHY --

• The general strategy is 
• Examine the size or magnitude  of the input of the problem

• If small enough, solve the problem directly
• Such solutions are fairly simple, and often trivial, for small input

• If not small, divide the input into two or more (smaller) parts

• Solve the same problem on each part 
• by calling the algorithm recursively on each part

• which is a huge saving in intellectual/design effort

• Merge the subsolutions (i.e., the solutions of the parts) into a global 
solution

• Merging subsolutions is usually simpler than finding a global solution from scratch
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DIVIDE & CONQUER
-- TEMPLATE --

Template divide&conquer (input I)

begin

if (size or value of input is small enough) 
then 

solve directly and return;

endif

divide input I into two or more parts I1, I2,...;

S1 divide&conquer(I1) ;

S2 divide&conquer(I2) ;

……………..

Merge the subsolutions S1, S2,...into a 

global solution S;

end
CS 6212 Design and Analysis of Algorithms                                                                                    Divide & Conquer 5

Input  I

I1 I2 Ik

S1 S2 Sk

Merge

Final Global Solution



FIRST APPLICATION
-- SORTING --

• The Sorting problem:

• Input: An arbitrary array of numbers 

• or array of any data type for which we have a comparator like ≤

• Output: the same input but in increasing order (from min to max)

• Goal: Apply Divide & Conquer to design an algorithm for sorting

• Note: we can sort into decreasing order (from max to min)

• simply change ≤ to ≥
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FIRST APPLICATION
-- SORTING REMARKS --

• Sorting is one of the oldest problems in CS

• Sorting algorithms are among the most widely used in IT

• Many sorting algorithms have been developed

• “First-generation” sorting algorithms take O(n2) time, which is 
relatively slow, especially for large n 

• Some 1st gen sorting algs:  insertion sort, selection sort, exchange sort

• Divide & Conquer sorting algorithms are much faster, as will be 
seen in this lecture
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FIRST APPLICATION
-- MERGESORT--

Proc.  Mergesort (in A[1:n], i,j; out B[1:n])
// sorts A[i:j] to B[i:j]
begin

generic C[1:n]; // same type as A
if i==j then B[i] = A[i]; Return; endif
Mergesort (A,i,(i+j)/2;C); // sorts 1st half
Mergesort(A,(i+j)/2 +1,j;C); // sorts 2nd half
Merge(C,i,j;B); // merges the two sorted 

// halves into a single sorted array
end Mergesort

To sort whole array: call Mergesort (A,1,n;B)

Procedure Merge(in C i,j; out B)
// merges C[i:k] and C[k+1:j] into B[i:j]
// k=(i+j)/2
begin

int k=(i+j)/2, u=i, v=k+1, w=u;
// u scans C[i:k], v scans C[k+1:j]
// w indexes B
while  (u <= k and v <= j) do

if C[u] <= C[v] then B[w++]=C[u++]; 
else B[w++]=C[v++]; 
endif

endwhile
if u > k then B[w:j] = C[v:j];
elseif v>j then B[w:j] = C[u:k]; 
endif

end Merge
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms                                                                                    Divide & Conquer

9

Output

4 7 10 14 181 3 5 8 9



EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output
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ILLUSTRATION OF MERGESORT
-- WHAT GOES ON INSIDE THE COMPUTER --
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Divide

• This is what goes 
on inside the 
computer when 
executing 
Metgesort

• But, don’t do that 
“at home”

• Rather, … (see 
next slide)



THE “BOSS-VIEW” OF MERGESORT
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Divide

Recursive Call
(clone-subordinate)

Recursive Call
(clone-subordinate)

Proper Mindset:
1. Divide data into 

parts
2. Then, as a boss, 

hand each part to a 
clone-subordinate

3. Wait for each 
subordinate to 
come back with its 
sub-solution

4. Then, as the boss, 
you take the sub-
solutions and 
merge into a 
global solution 

5. As as boss, you 
take the credit!

• NEVER 
MICROMANAGE 
your subordinates



TIME COMPLEXITY OF MERGESORT
-- DERIVING A RECURRENCE RELATION --

• Time of Merge: O(n)=cn, for some constant c, because:
• After each comparison, the input loses one element

• Once the input loses all its elements (after ≤ n comparisons), it is 
done

• Time of Mergesort: 
• Let 𝑇𝑇 𝑛𝑛 be the time of Mergesort of n elements

• 𝑇𝑇 𝑛𝑛 = (time of each Mergesort on n/2 elements)+(time of Merge)

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛,    T(1)=constant=c

• The above is called a recurrence relation
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TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION --

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛,    T(1)=constant=c.  Assume 𝒏𝒏 = 𝟐𝟐𝒌𝒌
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𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

𝑇𝑇
𝑛𝑛
2 = 2𝑇𝑇

𝑛𝑛
22 + 𝑐𝑐

𝑛𝑛
2

𝑇𝑇
𝑛𝑛
22 = 2𝑇𝑇

𝑛𝑛
23 + 𝑐𝑐

𝑛𝑛
22

…

𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 𝑐𝑐
𝑛𝑛

2𝑘𝑘−1

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 2𝑐𝑐

𝑛𝑛
2

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 22𝑐𝑐

𝑛𝑛
22

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 2𝑘𝑘−1𝑐𝑐
𝑛𝑛

2𝑘𝑘−1
• Each line above came from 

applying the recurrence relation 
on some 𝑛𝑛

2𝑖𝑖
, for 𝑖𝑖 = 0, 1, 2, … , k − 1

• Multiply each 𝑖𝑖𝑡𝑡𝑡 line above by 2𝑖𝑖

• Can be solved 
with the Master 
Theorem

• But we will solve 
it here more 
informally/easily



TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION (2) --
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𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 2𝑐𝑐

𝑛𝑛
2

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 22𝑐𝑐

𝑛𝑛
22

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 2𝑘𝑘−1𝑐𝑐
𝑛𝑛

2𝑘𝑘−1

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 𝑐𝑐𝑛𝑛

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 𝑐𝑐𝑛𝑛

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 𝑐𝑐𝑛𝑛

• Sum of left terms = sum of right terms
• Cancel terms that occur on both sides of “=“
• What remains on the left is: 𝑇𝑇 𝑛𝑛
• What remains on the right: 2𝑘𝑘𝑇𝑇 𝑛𝑛

2𝑘𝑘
+ 𝑐𝑐𝑛𝑛𝑐𝑐 = 𝑛𝑛𝑇𝑇 1 + 𝑐𝑐𝑛𝑛𝑐𝑐

• Therefore: 𝑇𝑇 𝑛𝑛 = 𝑛𝑛𝑇𝑇 1 + 𝑐𝑐𝑛𝑛𝑐𝑐 = 𝑐𝑐𝑛𝑛+ 𝑐𝑐𝑛𝑛 log𝑛𝑛 = 𝑂𝑂 𝑛𝑛 log𝑛𝑛

• 𝑻𝑻 𝒏𝒏 = 𝑶𝑶 𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏



SECOND APPLICATION OF D&C
-- QUICKSORT --

• This time we partition the input A[1:n] around an element in 
input A[1:n], say 𝑎𝑎 = 𝐴𝐴 1 , such that, after the partitioning:

• All the input elements that are ≤ 𝑎𝑎 are put in the first (left) 
partition

• All the input elements that are > 𝑎𝑎 are put in the second (right) 
partition

Input  A: 

After partitioning around 𝑎𝑎: 

• Partitioning takes O(n) time
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𝑎𝑎

𝑎𝑎

≤ 𝑎𝑎 > 𝑎𝑎



SECOND APPLICATION OF D&C
-- QUICKSORT ALGORITHM --

CS 6212 Design and Analysis of Algorithms                                                                                    Divide & Conquer

24

Procedure Quicksort(in/out A[1,n];in: p,q)  // sorts A[p:q]
// The sorting is in situ, i.e., in place (within the same input array A
begin

int r;
if (p==q) then return; endif // if one element to sort, then sorted
r := partition(A[p:q]); // r is the index where the partitioning 

// element (p.a.) lands, i.e., now A[r]==p.a.
Quicksort(A[p:r-1]); // now A[p:r-1] is sorted, and all are ≤ 𝑎𝑎
Quicksort(A[r+1:q); // now A[r+1:q] is sorted, and all are > 𝑎𝑎

end
At the end of the algorithm, A[p:q] is sorted, because:
• A[p:r-1] is sorted and all are ≤ 𝑎𝑎 => A[p] ≤A[p+1] ≤… ≤A[r-1] ≤ 𝑎𝑎 = A[r]
• A[r+1:q] is sorted, and all are > 𝑎𝑎 => 𝑎𝑎 <A[r+1] ≤A[r+2] ≤… ≤A[q]
• Therefore: A[p] ≤A[p+1] ≤… ≤A[r-1] ≤ 𝑎𝑎 = A[r]<A[r+1] ≤A[r+2] ≤… ≤A[q]



TIME COMPLEXITY OF QUICKSORT

• Let 𝑇𝑇(𝑛𝑛) be the time of Quicksort(A[1,n];1,n)

• 𝑇𝑇(𝑛𝑛)= (time of partition)+(time of Quicksort(A[1:n];1,r-1])) +  

(time of Quicksort(A[1:n];r+1,n]))

• 𝑇𝑇 𝑛𝑛 = 𝑐𝑐𝑛𝑛 + 𝑇𝑇 𝑟𝑟 − 1 + 𝑇𝑇(𝑛𝑛 − 𝑟𝑟)

• This is a recurrence relation, but we don’t know r

• Worst-case time complexity: 
• 𝑟𝑟 = 1 (i.e., partitioning is extremely unbalanced)

• 𝑇𝑇 𝑛𝑛 = 𝑐𝑐𝑛𝑛 + 𝑇𝑇 1− 1 + 𝑇𝑇 𝑛𝑛 − 1 = 𝑐𝑐𝑛𝑛 + 𝑇𝑇 0 + 𝑇𝑇 𝑛𝑛 − 1

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛
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TIME COMPLEXITY OF QUICKSORT
-- WORST-CASE ANALYSIS --

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛
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𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛
𝑇𝑇 𝑛𝑛 − 1 = 𝑇𝑇 𝑛𝑛 − 2 + 𝑐𝑐(𝑛𝑛 − 1)
𝑇𝑇 𝑛𝑛 − 2 = 𝑇𝑇 𝑛𝑛 − 3 + 𝑐𝑐(𝑛𝑛 − 2)
……
𝑇𝑇 1 = 𝑇𝑇 0 + 𝑐𝑐. 1 = 𝑐𝑐. 1

• Sum of left terms = sum of right terms
• Cancel terms that occur on both sides of “=“
• What remains on the left is: 𝑇𝑇 𝑛𝑛
• What remains on the right: 𝑐𝑐(1 + 2 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛)
• Therefore: 𝑇𝑇 𝑛𝑛 = 𝑐𝑐 1 + 2 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛 = 𝑐𝑐𝑛𝑛(𝑛𝑛 + 1)/2
• Conclusion: 𝑻𝑻 𝒏𝒏 = 𝑶𝑶(𝒏𝒏𝟐𝟐), which is bad!

The lines in the left box are all 
derived by applying  the top 
recurrence relations at different 
values: 𝑇𝑇 𝑚𝑚 = 𝑇𝑇 𝑚𝑚 − 1 + 𝑐𝑐𝑚𝑚
for 𝑚𝑚 = 𝑛𝑛,𝑛𝑛 − 1,𝑛𝑛 − 2, … , 1.

•Cannot be solved with the Master Theorem b/c the 
latter doesn’t apply to this kind of recurrence relation

•We’ll solve it using the informal unfolding method



TIME COMPLEXITY OF QUICKSORT
-- AVERAGE-CASE ANALYSIS --

• Irony: Quicksort is slow in the worst case (𝑶𝑶(𝒏𝒏𝟐𝟐)) yet it is called 
Quicksort 

• Reality: In practice, Quicksort is the fastest sorting algorithm 
around, faster even than Mergesort (which takes O(n log n) time < 
𝑶𝑶(𝒏𝒏𝟐𝟐))

• So, what is going on?

• Well, the worst case occurs when the input happens to be already 
sorted (or nearly sorted), but that rarely happens

• In practice, the input is in random order
• So, the question is: What happens if we have average input

• We need to perform “average-case” time complexity analysis
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AVERAGE-CASE ANALYSIS OF QUICKSORT (1)

• Recall the general recurrence relation: 
𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑟𝑟 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑟𝑟 + 𝑐𝑐𝑛𝑛

where 𝑟𝑟 can be 1 or 2 or … or 𝑛𝑛

• Thus, 𝑇𝑇 𝑛𝑛 can be:
• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 0 + 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛, or

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 1 + 𝑇𝑇 𝑛𝑛 − 2 + 𝑐𝑐𝑛𝑛, or

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 2 + 𝑇𝑇 𝑛𝑛 − 3 + 𝑐𝑐𝑛𝑛, or

• ………

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑇𝑇 0 + 𝑐𝑐𝑛𝑛
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• So, the average value of T(n) is the average of 
those n possible values, i.e., (the sum of those 
values)/n

• Thus, the sum is:
2[𝑇𝑇(0) + 𝑇𝑇(1) + 𝑇𝑇(2) +⋯ 𝑇𝑇(𝑛𝑛 − 1)] + 𝑐𝑐𝑛𝑛. 𝑛𝑛

• As you sum, group the terms as shown left



AVERAGE-CASE ANALYSIS OF QUICKSORT (2)

• Therefore, the average of 𝑇𝑇 𝑛𝑛 , denoted 𝑇𝑇𝐴𝐴 𝑛𝑛 , is:
• 𝑇𝑇𝐴𝐴 𝑛𝑛 = sum/𝑛𝑛

• 𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛.𝑛𝑛 /𝑛𝑛

• 𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2 /𝑛𝑛

• Multiplying both sides by 𝑛𝑛, we get

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2
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AVERAGE-CASE ANALYSIS OF QUICKSORT (3)

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 +⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2

• Since we are considering average time, we can assume that each 𝑇𝑇 𝑖𝑖 on the 
right (which is a recursive call on an average part) to be an average time 𝑇𝑇𝐴𝐴 𝑖𝑖

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇𝐴𝐴 1 + 𝑇𝑇𝐴𝐴 2 + ⋯+ 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2

• Applying the formula above at 𝑛𝑛 − 1, we get

• 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 = 2 𝑇𝑇𝐴𝐴 1 + 𝑇𝑇𝐴𝐴 2 + ⋯+ 𝑇𝑇𝐴𝐴 𝑛𝑛 − 2 + 𝑐𝑐(𝑛𝑛 − 1)2

• Subtracting the last two equations, we obtain:
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 − 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 = 2𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2 − 𝑐𝑐(𝑛𝑛 − 1)2

• Performing some arithmetic, we get:
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛 − 𝑐𝑐
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛 − 𝑐𝑐
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛 (because we got rid of  −𝑐𝑐)
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AVERAGE-CASE ANALYSIS OF QUICKSORT (4)

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛

• Divide both sides by 𝑛𝑛 𝑛𝑛 + 1 , we get:

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛 𝑛𝑛+1

≤ 𝑛𝑛+1 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

+ 2𝑐𝑐𝑛𝑛
𝑛𝑛 𝑛𝑛+1

• 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

≤ 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

• Calling 𝒇𝒇 𝒏𝒏 = 𝑻𝑻𝑨𝑨 𝒏𝒏
𝒏𝒏+𝟏𝟏

, and thus 𝑓𝑓 𝑛𝑛 − 1 = 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛

, the above 

equation becomes:

• 𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1
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AVERAGE-CASE ANALYSIS OF QUICKSORT (5)

• 𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

, where 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

(𝑓𝑓 0 = 𝑇𝑇𝐴𝐴 0
0+1

= 0)
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𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 +
2𝑐𝑐
𝑛𝑛+ 1

𝑓𝑓 𝑛𝑛 − 1 ≤ 𝑓𝑓 𝑛𝑛− 2 +
2𝑐𝑐
𝑛𝑛

𝑓𝑓 𝑛𝑛 − 2 ≤ 𝑓𝑓 𝑛𝑛− 3 +
2𝑐𝑐
𝑛𝑛 − 1

…………….

𝑓𝑓 1 ≤ 𝑓𝑓 0 +
2𝑐𝑐
2

The lines in the left box are all 
derived by applying  the top 
recurrence relations at different 
values: 𝑓𝑓 𝑚𝑚 ≤ 𝑓𝑓 𝑚𝑚 − 1 + 2𝑐𝑐

𝑚𝑚+1
for 

𝑚𝑚 = 𝑛𝑛,𝑛𝑛 − 1,𝑛𝑛 − 2, … , 1.

• Sum of left terms ≤ sum of right terms
• Cancel terms that occur on both sides of “≤“
• What remains on the left is: 𝑓𝑓 𝑛𝑛
• What remains on the right:𝑓𝑓 0 + 2c(1

2
+ 1

3
+ ⋯+ 1

𝑛𝑛
+ 1

𝑛𝑛+1
)

• Therefore:𝑓𝑓 𝑛𝑛 ≤ 2c(1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

) note: 𝑓𝑓 0 =0



AVERAGE-CASE ANALYSIS OF QUICKSORT (6)

• 𝑓𝑓 𝑛𝑛 ≤ 2c(1
2

+ 1
3

+⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

), where 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

• From Calculus, 1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

≤ Ln 𝑛𝑛 + 1 = 𝑂𝑂(log𝑛𝑛)

• Therefore, 𝑓𝑓 𝑛𝑛 ≤ 2c Ln 𝑛𝑛 + 1

• Since, 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

and hence 𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 + 1 𝑓𝑓 𝑛𝑛 , we get

• 𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑓𝑓 𝑛𝑛 ≤ 2𝑐𝑐 𝑛𝑛 + 1 Ln 𝑛𝑛 + 1 = 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

• Conclusion: 𝑻𝑻𝑨𝑨 𝒏𝒏 = 𝑶𝑶(𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏)
• Because the constant factor in the above big-O is < the constant 

factors of the Big-O of other sorting algorithms, Quicksort is faster 
on average than other sorting algorithms
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THE PARTITION ALGORITHM

• Quicksort did some fancy partitioning

• Now we give an O(n) time in situ partition algorithm
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THE PARTITION ALGORITHM (2)
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Function Partition(in/out A[p:q])
begin

int i,j;
real a=A[p]; // a is the partitioning element
i=p; j=q;
while (i < j)  do

while (A[i] <= a && i<q) do i++;  endwhile
while (A[j] > a && j>p)  do j--; endwhile
if i < j then

swap (A[i],A[j]);  i++;   j--;
endif

endwhile
swap(A[p],A[j]);
return (j);

end  



ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4
5 8 1 9 3 14 7 10 18 4

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
5 8 1 9 3 14 7 10 18 4

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j
5 4 1 3 9 14 7 10 18 8

j i
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j

i>j
Swap(A[1], A[4])

5 4 1 3 9 14 7 10 18 8

j i
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ILLUSTRATION OF PARTITION
Partitioning 

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j

i>j
Swap(A[1], A[4])

5 4 1 3 9 14 7 10 18 8

j i
Now A is partitioned 3 4 1 5 9 14 7 10 18 8
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TIME COMPLEXITY OF PARTITION

• At every step, either i moves one step right or j moves one 
step left

• After i and j meet and cross by at most one step, only 
constant-time work is done and the algorithm terminates

• So the time is proportional to the “total distance” traveled by i 
and j combined

• That traveled distance is the length of the array (no matter 
where i and j meet)

• Therefore, the time of partition is O(n)
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NEXT LECTURE

• We finish Divide and Conquer

• We apply it to the Order Statistics problem: 

• Finding the kth smallest element of an arbitrary (unsorted) 
array

• We will see a simple way of applying D&C to that problem, 
yielding a slow algorithm

• Then we apply D&C to that problem in a more sophisticated 
way, yielding a much faster algorithm

CS 6212 Design and Analysis of Algorithms                                                                                    Divide & Conquer

48


	CS 6212 Design and Analysis of Algorithms��Lecture: Divide & Conquer – Part I
	Objectives of this Lecture
	Outline
	Divide & conquer�-- general strategy and underlying philosophy --
	Divide & conquer�-- Template --
	First application�-- sorting --
	First application�-- sorting remarks --
	First application�-- mergesort--
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Illustration of mergesort�-- What goes on inside the computer --
	The “boss-view” of mergesort
	Time complexity of mergesort�-- deriving a recurrence relation --
	Time complexity of mergesort�-- Solving the recurrence relation --
	Time complexity of mergesort�-- Solving the recurrence relation (2) --
	Second application of d&C�-- Quicksort --
	Second application of d&C�-- Quicksort Algorithm --
	Time complexity of Quicksort
	Time complexity of Quicksort�-- worst-case analysis --
	Time complexity of Quicksort�-- average-case analysis --
	average-case analysis of quicksort (1)
	average-case analysis of quicksort (2)
	average-case analysis of quicksort (3)
	average-case analysis of quicksort (4)
	average-case analysis of quicksort (5)
	average-case analysis of quicksort (6)
	The partition algorithm
	The partition algorithm (2)
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Time complexity of partition
	Next lecture

