
CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: DIVIDE & CONQUER –
PART I

Instructor: Abdou Youssef

CS 6212 Design and Analysis of Algorithms Divide & Conquer

1

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe the Divide & Conquer algorithmic design technique

• Apply the technique to designing algorithms for an important
problem, Sorting, in two different ways

• Draw and appreciate the strong connection between recursion and
Divide & Conquer

• Carry out time complexity analysis of Divide & Conquer
algorithms, by deriving and solving recurrence relations

• Perform worst-case and average-case time complexity analysis

CS 6212 Design and Analysis of Algorithms Divide & Conquer

2

OUTLINE

• Template for Divide and Conquer

• First Application: Mergesort

• Second Application: Quicksort

CS 6212 Design and Analysis of Algorithms Divide & Conquer

3

DIVIDE & CONQUER
-- GENERAL STRATEGY AND UNDERLYING PHILOSOPHY --

• The general strategy is
• Examine the size or magnitude of the input of the problem

• If small enough, solve the problem directly
• Such solutions are fairly simple, and often trivial, for small input

• If not small, divide the input into two or more (smaller) parts

• Solve the same problem on each part
• by calling the algorithm recursively on each part

• which is a huge saving in intellectual/design effort

• Merge the subsolutions (i.e., the solutions of the parts) into a global
solution

• Merging subsolutions is usually simpler than finding a global solution from scratch

CS 6212 Design and Analysis of Algorithms Divide & Conquer

4

DIVIDE & CONQUER
-- TEMPLATE --

Template divide&conquer (input I)

begin

if (size or value of input is small enough)
then

solve directly and return;

endif

divide input I into two or more parts I1, I2,...;

S1 divide&conquer(I1) ;

S2 divide&conquer(I2) ;

……………..

Merge the subsolutions S1, S2,...into a

global solution S;

end
CS 6212 Design and Analysis of Algorithms Divide & Conquer 5

Input I

I1 I2 Ik

S1 S2 Sk

Merge

Final Global Solution

FIRST APPLICATION
-- SORTING --

• The Sorting problem:

• Input: An arbitrary array of numbers

• or array of any data type for which we have a comparator like ≤

• Output: the same input but in increasing order (from min to max)

• Goal: Apply Divide & Conquer to design an algorithm for sorting

• Note: we can sort into decreasing order (from max to min)

• simply change ≤ to ≥

CS 6212 Design and Analysis of Algorithms Divide & Conquer

6

FIRST APPLICATION
-- SORTING REMARKS --

• Sorting is one of the oldest problems in CS

• Sorting algorithms are among the most widely used in IT

• Many sorting algorithms have been developed

• “First-generation” sorting algorithms take O(n2) time, which is
relatively slow, especially for large n

• Some 1st gen sorting algs: insertion sort, selection sort, exchange sort

• Divide & Conquer sorting algorithms are much faster, as will be
seen in this lecture

CS 6212 Design and Analysis of Algorithms Divide & Conquer

7

FIRST APPLICATION
-- MERGESORT--

Proc. Mergesort (in A[1:n], i,j; out B[1:n])
// sorts A[i:j] to B[i:j]
begin

generic C[1:n]; // same type as A
if i==j then B[i] = A[i]; Return; endif
Mergesort (A,i,(i+j)/2;C); // sorts 1st half
Mergesort(A,(i+j)/2 +1,j;C); // sorts 2nd half
Merge(C,i,j;B); // merges the two sorted

// halves into a single sorted array
end Mergesort

To sort whole array: call Mergesort (A,1,n;B)

Procedure Merge(in C i,j; out B)
// merges C[i:k] and C[k+1:j] into B[i:j]
// k=(i+j)/2
begin

int k=(i+j)/2, u=i, v=k+1, w=u;
// u scans C[i:k], v scans C[k+1:j]
// w indexes B
while (u <= k and v <= j) do

if C[u] <= C[v] then B[w++]=C[u++];
else B[w++]=C[v++];
endif

endwhile
if u > k then B[w:j] = C[v:j];
elseif v>j then B[w:j] = C[u:k];
endif

end Merge

CS 6212 Design and Analysis of Algorithms Divide & Conquer

8

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

9

Output

4 7 10 14 181 3 5 8 9

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

10

1Output

4 7 10 14 183 5 8 9

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

11

1 3Output

4 7 10 14 185 8 9

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

12

1 3 4Output

7 10 14 185 8 9

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

13

1 3 4 5Output

7 10 14 188 9

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

14

1 3 4 5 7Output

10 14 188 9

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

15

1 3 4 5 7 8Output

10 14 189

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

16

1 3 4 5 7 8 9Output

10 14 18

EXPLANATION OF MERGE

• Input: Two sorted arrays

1. Compare heads

2. Move smaller value to the output

3. Move forward the smaller head

4. Repeat 1-3 until one input half is empty

5. Move remainder of other half to output

CS 6212 Design and Analysis of Algorithms Divide & Conquer

17

1 3 4 5 7 8 9 10 14 18Output

ILLUSTRATION OF MERGESORT
-- WHAT GOES ON INSIDE THE COMPUTER --

CS 6212 Design and Analysis of Algorithms Divide & Conquer

18

Divide

• This is what goes
on inside the
computer when
executing
Metgesort

• But, don’t do that
“at home”

• Rather, … (see
next slide)

THE “BOSS-VIEW” OF MERGESORT

CS 6212 Design and Analysis of Algorithms Divide & Conquer

19

Divide

Recursive Call
(clone-subordinate)

Recursive Call
(clone-subordinate)

Proper Mindset:
1. Divide data into

parts
2. Then, as a boss,

hand each part to a
clone-subordinate

3. Wait for each
subordinate to
come back with its
sub-solution

4. Then, as the boss,
you take the sub-
solutions and
merge into a
global solution

5. As as boss, you
take the credit!

• NEVER
MICROMANAGE
your subordinates

TIME COMPLEXITY OF MERGESORT
-- DERIVING A RECURRENCE RELATION --

• Time of Merge: O(n)=cn, for some constant c, because:
• After each comparison, the input loses one element

• Once the input loses all its elements (after ≤ n comparisons), it is
done

• Time of Mergesort:
• Let 𝑇𝑇 𝑛𝑛 be the time of Mergesort of n elements

• 𝑇𝑇 𝑛𝑛 = (time of each Mergesort on n/2 elements)+(time of Merge)

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛, T(1)=constant=c

• The above is called a recurrence relation

CS 6212 Design and Analysis of Algorithms Divide & Conquer

20

TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION --

• 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ 𝑐𝑐𝑛𝑛, T(1)=constant=c. Assume 𝒏𝒏 = 𝟐𝟐𝒌𝒌

CS 6212 Design and Analysis of Algorithms Divide & Conquer

21

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

𝑇𝑇
𝑛𝑛
2 = 2𝑇𝑇

𝑛𝑛
22 + 𝑐𝑐

𝑛𝑛
2

𝑇𝑇
𝑛𝑛
22 = 2𝑇𝑇

𝑛𝑛
23 + 𝑐𝑐

𝑛𝑛
22

…

𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 𝑐𝑐
𝑛𝑛

2𝑘𝑘−1

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 2𝑐𝑐

𝑛𝑛
2

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 22𝑐𝑐

𝑛𝑛
22

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 2𝑘𝑘−1𝑐𝑐
𝑛𝑛

2𝑘𝑘−1
• Each line above came from

applying the recurrence relation
on some 𝑛𝑛

2𝑖𝑖
, for 𝑖𝑖 = 0, 1, 2, … , k − 1

• Multiply each 𝑖𝑖𝑡𝑡𝑡 line above by 2𝑖𝑖

• Can be solved
with the Master
Theorem

• But we will solve
it here more
informally/easily

TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION (2) --

CS 6212 Design and Analysis of Algorithms Divide & Conquer

22

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 2𝑐𝑐

𝑛𝑛
2

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 22𝑐𝑐

𝑛𝑛
22

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 2𝑘𝑘−1𝑐𝑐
𝑛𝑛

2𝑘𝑘−1

𝑇𝑇 𝑛𝑛 = 2𝑇𝑇
𝑛𝑛
2 + 𝑐𝑐𝑛𝑛

2𝑇𝑇
𝑛𝑛
2 = 22𝑇𝑇

𝑛𝑛
22 + 𝑐𝑐𝑛𝑛

22𝑇𝑇
𝑛𝑛
22 = 23𝑇𝑇

𝑛𝑛
23 + 𝑐𝑐𝑛𝑛

…

2𝑘𝑘−1𝑇𝑇
𝑛𝑛

2𝑘𝑘−1 = 2𝑘𝑘𝑇𝑇
𝑛𝑛

2𝑘𝑘 + 𝑐𝑐𝑛𝑛

• Sum of left terms = sum of right terms
• Cancel terms that occur on both sides of “=“
• What remains on the left is: 𝑇𝑇 𝑛𝑛
• What remains on the right: 2𝑘𝑘𝑇𝑇 𝑛𝑛

2𝑘𝑘
+ 𝑐𝑐𝑛𝑛𝑐𝑐 = 𝑛𝑛𝑇𝑇 1 + 𝑐𝑐𝑛𝑛𝑐𝑐

• Therefore: 𝑇𝑇 𝑛𝑛 = 𝑛𝑛𝑇𝑇 1 + 𝑐𝑐𝑛𝑛𝑐𝑐 = 𝑐𝑐𝑛𝑛+ 𝑐𝑐𝑛𝑛 log𝑛𝑛 = 𝑂𝑂 𝑛𝑛 log𝑛𝑛

• 𝑻𝑻 𝒏𝒏 = 𝑶𝑶 𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏

SECOND APPLICATION OF D&C
-- QUICKSORT --

• This time we partition the input A[1:n] around an element in
input A[1:n], say 𝑎𝑎 = 𝐴𝐴 1 , such that, after the partitioning:

• All the input elements that are ≤ 𝑎𝑎 are put in the first (left)
partition

• All the input elements that are > 𝑎𝑎 are put in the second (right)
partition

Input A:

After partitioning around 𝑎𝑎:

• Partitioning takes O(n) time

CS 6212 Design and Analysis of Algorithms Divide & Conquer

23

𝑎𝑎

𝑎𝑎

≤ 𝑎𝑎 > 𝑎𝑎

SECOND APPLICATION OF D&C
-- QUICKSORT ALGORITHM --

CS 6212 Design and Analysis of Algorithms Divide & Conquer

24

Procedure Quicksort(in/out A[1,n];in: p,q) // sorts A[p:q]
// The sorting is in situ, i.e., in place (within the same input array A
begin

int r;
if (p==q) then return; endif // if one element to sort, then sorted
r := partition(A[p:q]); // r is the index where the partitioning

// element (p.a.) lands, i.e., now A[r]==p.a.
Quicksort(A[p:r-1]); // now A[p:r-1] is sorted, and all are ≤ 𝑎𝑎
Quicksort(A[r+1:q); // now A[r+1:q] is sorted, and all are > 𝑎𝑎

end
At the end of the algorithm, A[p:q] is sorted, because:
• A[p:r-1] is sorted and all are ≤ 𝑎𝑎 => A[p] ≤A[p+1] ≤… ≤A[r-1] ≤ 𝑎𝑎 = A[r]
• A[r+1:q] is sorted, and all are > 𝑎𝑎 => 𝑎𝑎 <A[r+1] ≤A[r+2] ≤… ≤A[q]
• Therefore: A[p] ≤A[p+1] ≤… ≤A[r-1] ≤ 𝑎𝑎 = A[r]<A[r+1] ≤A[r+2] ≤… ≤A[q]

TIME COMPLEXITY OF QUICKSORT

• Let 𝑇𝑇(𝑛𝑛) be the time of Quicksort(A[1,n];1,n)

• 𝑇𝑇(𝑛𝑛)= (time of partition)+(time of Quicksort(A[1:n];1,r-1])) +

(time of Quicksort(A[1:n];r+1,n]))

• 𝑇𝑇 𝑛𝑛 = 𝑐𝑐𝑛𝑛 + 𝑇𝑇 𝑟𝑟 − 1 + 𝑇𝑇(𝑛𝑛 − 𝑟𝑟)

• This is a recurrence relation, but we don’t know r

• Worst-case time complexity:
• 𝑟𝑟 = 1 (i.e., partitioning is extremely unbalanced)

• 𝑇𝑇 𝑛𝑛 = 𝑐𝑐𝑛𝑛 + 𝑇𝑇 1− 1 + 𝑇𝑇 𝑛𝑛 − 1 = 𝑐𝑐𝑛𝑛 + 𝑇𝑇 0 + 𝑇𝑇 𝑛𝑛 − 1

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛

CS 6212 Design and Analysis of Algorithms Divide & Conquer

25

TIME COMPLEXITY OF QUICKSORT
-- WORST-CASE ANALYSIS --

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛

CS 6212 Design and Analysis of Algorithms Divide & Conquer

26

𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛
𝑇𝑇 𝑛𝑛 − 1 = 𝑇𝑇 𝑛𝑛 − 2 + 𝑐𝑐(𝑛𝑛 − 1)
𝑇𝑇 𝑛𝑛 − 2 = 𝑇𝑇 𝑛𝑛 − 3 + 𝑐𝑐(𝑛𝑛 − 2)
……
𝑇𝑇 1 = 𝑇𝑇 0 + 𝑐𝑐. 1 = 𝑐𝑐. 1

• Sum of left terms = sum of right terms
• Cancel terms that occur on both sides of “=“
• What remains on the left is: 𝑇𝑇 𝑛𝑛
• What remains on the right: 𝑐𝑐(1 + 2 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛)
• Therefore: 𝑇𝑇 𝑛𝑛 = 𝑐𝑐 1 + 2 + ⋯+ 𝑛𝑛 − 1 + 𝑛𝑛 = 𝑐𝑐𝑛𝑛(𝑛𝑛 + 1)/2
• Conclusion: 𝑻𝑻 𝒏𝒏 = 𝑶𝑶(𝒏𝒏𝟐𝟐), which is bad!

The lines in the left box are all
derived by applying the top
recurrence relations at different
values: 𝑇𝑇 𝑚𝑚 = 𝑇𝑇 𝑚𝑚 − 1 + 𝑐𝑐𝑚𝑚
for 𝑚𝑚 = 𝑛𝑛,𝑛𝑛 − 1,𝑛𝑛 − 2, … , 1.

•Cannot be solved with the Master Theorem b/c the
latter doesn’t apply to this kind of recurrence relation

•We’ll solve it using the informal unfolding method

TIME COMPLEXITY OF QUICKSORT
-- AVERAGE-CASE ANALYSIS --

• Irony: Quicksort is slow in the worst case (𝑶𝑶(𝒏𝒏𝟐𝟐)) yet it is called
Quicksort

• Reality: In practice, Quicksort is the fastest sorting algorithm
around, faster even than Mergesort (which takes O(n log n) time <
𝑶𝑶(𝒏𝒏𝟐𝟐))

• So, what is going on?

• Well, the worst case occurs when the input happens to be already
sorted (or nearly sorted), but that rarely happens

• In practice, the input is in random order
• So, the question is: What happens if we have average input

• We need to perform “average-case” time complexity analysis

CS 6212 Design and Analysis of Algorithms Divide & Conquer

27

AVERAGE-CASE ANALYSIS OF QUICKSORT (1)

• Recall the general recurrence relation:
𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑟𝑟 − 1 + 𝑇𝑇 𝑛𝑛 − 𝑟𝑟 + 𝑐𝑐𝑛𝑛

where 𝑟𝑟 can be 1 or 2 or … or 𝑛𝑛

• Thus, 𝑇𝑇 𝑛𝑛 can be:
• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 0 + 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛, or

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 1 + 𝑇𝑇 𝑛𝑛 − 2 + 𝑐𝑐𝑛𝑛, or

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 2 + 𝑇𝑇 𝑛𝑛 − 3 + 𝑐𝑐𝑛𝑛, or

• ………

• 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑇𝑇 0 + 𝑐𝑐𝑛𝑛

CS 6212 Design and Analysis of Algorithms Divide & Conquer

28

• So, the average value of T(n) is the average of
those n possible values, i.e., (the sum of those
values)/n

• Thus, the sum is:
2[𝑇𝑇(0) + 𝑇𝑇(1) + 𝑇𝑇(2) +⋯ 𝑇𝑇(𝑛𝑛 − 1)] + 𝑐𝑐𝑛𝑛. 𝑛𝑛

• As you sum, group the terms as shown left

AVERAGE-CASE ANALYSIS OF QUICKSORT (2)

• Therefore, the average of 𝑇𝑇 𝑛𝑛 , denoted 𝑇𝑇𝐴𝐴 𝑛𝑛 , is:
• 𝑇𝑇𝐴𝐴 𝑛𝑛 = sum/𝑛𝑛

• 𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛.𝑛𝑛 /𝑛𝑛

• 𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2 /𝑛𝑛

• Multiplying both sides by 𝑛𝑛, we get

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 + ⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2

CS 6212 Design and Analysis of Algorithms Divide & Conquer

29

AVERAGE-CASE ANALYSIS OF QUICKSORT (3)

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇 1 + 𝑇𝑇 2 +⋯+ 𝑇𝑇 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2

• Since we are considering average time, we can assume that each 𝑇𝑇 𝑖𝑖 on the
right (which is a recursive call on an average part) to be an average time 𝑇𝑇𝐴𝐴 𝑖𝑖

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 2 𝑇𝑇𝐴𝐴 1 + 𝑇𝑇𝐴𝐴 2 + ⋯+ 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2

• Applying the formula above at 𝑛𝑛 − 1, we get

• 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 = 2 𝑇𝑇𝐴𝐴 1 + 𝑇𝑇𝐴𝐴 2 + ⋯+ 𝑇𝑇𝐴𝐴 𝑛𝑛 − 2 + 𝑐𝑐(𝑛𝑛 − 1)2

• Subtracting the last two equations, we obtain:
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 − 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 = 2𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 𝑐𝑐𝑛𝑛2 − 𝑐𝑐(𝑛𝑛 − 1)2

• Performing some arithmetic, we get:
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 − 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛 − 𝑐𝑐
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛 − 𝑐𝑐
• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛 (because we got rid of −𝑐𝑐)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

30

AVERAGE-CASE ANALYSIS OF QUICKSORT (4)

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑇𝑇𝐴𝐴 𝑛𝑛 − 1 + 2𝑐𝑐𝑛𝑛

• Divide both sides by 𝑛𝑛 𝑛𝑛 + 1 , we get:

• 𝑛𝑛𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛 𝑛𝑛+1

≤ 𝑛𝑛+1 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛 𝑛𝑛+1

+ 2𝑐𝑐𝑛𝑛
𝑛𝑛 𝑛𝑛+1

• 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

≤ 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛

+ 2𝑐𝑐
𝑛𝑛+1

• Calling 𝒇𝒇 𝒏𝒏 = 𝑻𝑻𝑨𝑨 𝒏𝒏
𝒏𝒏+𝟏𝟏

, and thus 𝑓𝑓 𝑛𝑛 − 1 = 𝑇𝑇𝐴𝐴 𝑛𝑛−1
𝑛𝑛

, the above

equation becomes:

• 𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

CS 6212 Design and Analysis of Algorithms Divide & Conquer

31

AVERAGE-CASE ANALYSIS OF QUICKSORT (5)

• 𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 + 2𝑐𝑐
𝑛𝑛+1

, where 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

(𝑓𝑓 0 = 𝑇𝑇𝐴𝐴 0
0+1

= 0)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

32

𝑓𝑓 𝑛𝑛 ≤ 𝑓𝑓 𝑛𝑛 − 1 +
2𝑐𝑐
𝑛𝑛+ 1

𝑓𝑓 𝑛𝑛 − 1 ≤ 𝑓𝑓 𝑛𝑛− 2 +
2𝑐𝑐
𝑛𝑛

𝑓𝑓 𝑛𝑛 − 2 ≤ 𝑓𝑓 𝑛𝑛− 3 +
2𝑐𝑐
𝑛𝑛 − 1

…………….

𝑓𝑓 1 ≤ 𝑓𝑓 0 +
2𝑐𝑐
2

The lines in the left box are all
derived by applying the top
recurrence relations at different
values: 𝑓𝑓 𝑚𝑚 ≤ 𝑓𝑓 𝑚𝑚 − 1 + 2𝑐𝑐

𝑚𝑚+1
for

𝑚𝑚 = 𝑛𝑛,𝑛𝑛 − 1,𝑛𝑛 − 2, … , 1.

• Sum of left terms ≤ sum of right terms
• Cancel terms that occur on both sides of “≤“
• What remains on the left is: 𝑓𝑓 𝑛𝑛
• What remains on the right:𝑓𝑓 0 + 2c(1

2
+ 1

3
+ ⋯+ 1

𝑛𝑛
+ 1

𝑛𝑛+1
)

• Therefore:𝑓𝑓 𝑛𝑛 ≤ 2c(1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

) note: 𝑓𝑓 0 =0

AVERAGE-CASE ANALYSIS OF QUICKSORT (6)

• 𝑓𝑓 𝑛𝑛 ≤ 2c(1
2

+ 1
3

+⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

), where 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

• From Calculus, 1
2

+ 1
3

+ ⋯+ 1
𝑛𝑛

+ 1
𝑛𝑛+1

≤ Ln 𝑛𝑛 + 1 = 𝑂𝑂(log𝑛𝑛)

• Therefore, 𝑓𝑓 𝑛𝑛 ≤ 2c Ln 𝑛𝑛 + 1

• Since, 𝑓𝑓 𝑛𝑛 = 𝑇𝑇𝐴𝐴 𝑛𝑛
𝑛𝑛+1

and hence 𝑇𝑇𝐴𝐴 𝑛𝑛 = 𝑛𝑛 + 1 𝑓𝑓 𝑛𝑛 , we get

• 𝑇𝑇𝐴𝐴 𝑛𝑛 ≤ 𝑛𝑛 + 1 𝑓𝑓 𝑛𝑛 ≤ 2𝑐𝑐 𝑛𝑛 + 1 Ln 𝑛𝑛 + 1 = 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

• Conclusion: 𝑻𝑻𝑨𝑨 𝒏𝒏 = 𝑶𝑶(𝒏𝒏𝒍𝒍𝒍𝒍𝒍𝒍𝒏𝒏)
• Because the constant factor in the above big-O is < the constant

factors of the Big-O of other sorting algorithms, Quicksort is faster
on average than other sorting algorithms

CS 6212 Design and Analysis of Algorithms Divide & Conquer

33

THE PARTITION ALGORITHM

• Quicksort did some fancy partitioning

• Now we give an O(n) time in situ partition algorithm

CS 6212 Design and Analysis of Algorithms Divide & Conquer

34

THE PARTITION ALGORITHM (2)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

35

Function Partition(in/out A[p:q])
begin

int i,j;
real a=A[p]; // a is the partitioning element
i=p; j=q;
while (i < j) do

while (A[i] <= a && i<q) do i++; endwhile
while (A[j] > a && j>p) do j--; endwhile
if i < j then

swap (A[i],A[j]); i++; j--;
endif

endwhile
swap(A[p],A[j]);
return (j);

end

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4
5 8 1 9 3 14 7 10 18 4

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

36

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
5 8 1 9 3 14 7 10 18 4

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

37

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

38

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

39

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

40

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

41

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

42

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j
5 4 1 9 3 14 7 10 18 8

i j

CS 6212 Design and Analysis of Algorithms Divide & Conquer

43

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j
5 4 1 3 9 14 7 10 18 8

j i

CS 6212 Design and Analysis of Algorithms Divide & Conquer

44

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j

i>j
Swap(A[1], A[4])

5 4 1 3 9 14 7 10 18 8

j i

CS 6212 Design and Analysis of Algorithms Divide & Conquer

45

ILLUSTRATION OF PARTITION
Partitioning

Element Operation Array

A[1]=5

Partition(A[1:10]) 5 8 1 9 3 14 7 10 18 4

8>5, 4<5
Swap(A[2], A[10])

5 8 1 9 3 14 7 10 18 4

i j

9>5, 3<5
Swap(A[4], A[5])

5 4 1 9 3 14 7 10 18 8

i j

i>j
Swap(A[1], A[4])

5 4 1 3 9 14 7 10 18 8

j i
Now A is partitioned 3 4 1 5 9 14 7 10 18 8

CS 6212 Design and Analysis of Algorithms Divide & Conquer

46

TIME COMPLEXITY OF PARTITION

• At every step, either i moves one step right or j moves one
step left

• After i and j meet and cross by at most one step, only
constant-time work is done and the algorithm terminates

• So the time is proportional to the “total distance” traveled by i
and j combined

• That traveled distance is the length of the array (no matter
where i and j meet)

• Therefore, the time of partition is O(n)

CS 6212 Design and Analysis of Algorithms Divide & Conquer

47

NEXT LECTURE

• We finish Divide and Conquer

• We apply it to the Order Statistics problem:

• Finding the kth smallest element of an arbitrary (unsorted)
array

• We will see a simple way of applying D&C to that problem,
yielding a slow algorithm

• Then we apply D&C to that problem in a more sophisticated
way, yielding a much faster algorithm

CS 6212 Design and Analysis of Algorithms Divide & Conquer

48

	CS 6212 Design and Analysis of Algorithms��Lecture: Divide & Conquer – Part I
	Objectives of this Lecture
	Outline
	Divide & conquer�-- general strategy and underlying philosophy --
	Divide & conquer�-- Template --
	First application�-- sorting --
	First application�-- sorting remarks --
	First application�-- mergesort--
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Illustration of mergesort�-- What goes on inside the computer --
	The “boss-view” of mergesort
	Time complexity of mergesort�-- deriving a recurrence relation --
	Time complexity of mergesort�-- Solving the recurrence relation --
	Time complexity of mergesort�-- Solving the recurrence relation (2) --
	Second application of d&C�-- Quicksort --
	Second application of d&C�-- Quicksort Algorithm --
	Time complexity of Quicksort
	Time complexity of Quicksort�-- worst-case analysis --
	Time complexity of Quicksort�-- average-case analysis --
	average-case analysis of quicksort (1)
	average-case analysis of quicksort (2)
	average-case analysis of quicksort (3)
	average-case analysis of quicksort (4)
	average-case analysis of quicksort (5)
	average-case analysis of quicksort (6)
	The partition algorithm
	The partition algorithm (2)
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Time complexity of partition
	Next lecture

