CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: DIVIDE & CONQUER -
PART I

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:
* Describe the Divide & Conquer algorithmic design technique

 Apply the technique to designingalgorithms for an important
problem,Sorting,in two different ways

 Draw and appreciate the strong connection betweenrecursion and
Divide & Conquer

e Carry out time complexity analysis of Divide & Conquer
algorithms, by deriving and solving recurrence relations

» Perform worst-case and average-case time complexity analysis

OUTLINE

 Template for Divide and Conquer
e First Application: Mergesort

* Second Application: Quicksort

DIVIDE & CONQUER
-- GENERAL STRATEGY AND UNDERLYING PHILOSOPHY --

 The general strategyis
e Examine the size or magnitude of the input of the problem
e If small enough, solve the problem directly
e Such solutions are fairly simple, and often trivial, for small input
e If not small, divide the input into two or more (smaller) parts
* Solve the same problem on each part
e by calling the algorithm recursively on each part
e whichis a huge saving in intellectual/design effort

 Merge the subsolutions (i.e., the solutions of the parts) into a global
solution

 Merging subsolutions is usually simpler than finding a global solution from scratch

DIVIDE & CONQUER
-- TEMPLATE --

Template divide&conquer (inputI)
begin
if (size or value of input is small enough)
then
solve directly and return;
endif
divide inputl into two or more parts I, L,,...;
S, € divide&conquex(l,) ;
S, € divide&conquex(l,) ;

Merge the subsolutions S, S,,...intoa

global solution S; . .
Final Global Solution

end
CS 6212 Design and Analysis of Algorithms Divide & Conquer 5

FIRST APPLICATION
-- SORTING --

e The Sorting problem:

e Input: An arbitrary array of numbers
e or array of any data type for which we have a comparator like <

 Output: the same input but in increasing order (from min to max)

 Goal: Apply Divide & Conquer to design an algorithm for sorting

* Note: we can sort into decreasing order (from max to min)

e simply change < to >

FIRST APPLICATION
-- SORTING REMARKS --

e Sortingis one of the oldest problemsin CS
e Sorting algorithms are among the most widely used in IT
 Many sorting algorithms have been developed

» “First-generation” sorting algorithms take O(n?) time, which is
relatively slow, especially for large n

e Some 1%t gen sorting algs: insertion sort, selection sort, exchange sort

e Divide & Conquer sorting algorithms are much faster, as will be
seen in this lecture

FIRST APPLICATION
-- MERGESORT --

Proc. Mergesort (inA[1:n],1,j;out B[1:n])
// sorts A[i:j] to B[i:j]
begin
generic C[1l:n];// same type as A
if i==j then B[i] = A[i]; Return; endif
Mergesort (A,i,(i+))/2;C);// sorts 15t half
Mergesort(A,(itj)/2 +1,j;C); // sorts 274 half
Merge(C,1,j;B); // merges the two sorted
// halves into a single sorted array
end Mergesort

To sort whole array: call Mergesort (A,1,n;B)

CS 6212 Design and Analysis of Algorithms

Procedure Merge(in C i,j; out B)
// mexges C[i:k] and C[k+1:j] into B[i:j]
// k=(it+j)/2
begin
int k=(i+j)/2,u=i, v=k+1, w=u;
// u scans CJ[i:k], vscans C[k+1:j]
// w indexes B
while (u<=kand v <=j)do
if C[u] <= C[v] then B[w++]=C[u++];
else B[w++]=C[v++];
endif
endwhile
if u > k then B[w:j] = C[v:j];
elseif v>j then B[w:j] = C[u:Kk];
endif

end Merge

Divide & Conquer

EXPLANATION OF MERGE

e Input: Two sorted arrays *

135189 I*IEIIEIIIIH

1. Compare heads
Move smaller value to the output
Move forward the smaller head

Repeat 1-3 until one input half is empty

o & Db

Move remainder of other half to output

Output d |

CS 6212 Design and Analysis of Algorithms Divide & Conquer

e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

-élﬂﬂﬂ élnmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output - .

10

CS 6212 Design and Analysis of Algorithms Divide & Conquer

e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

--éﬂﬂ élnmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output - EE .

11

CS 6212 Design and Analysis of Algorithms Divide & Conquer

e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

--éﬂﬂ -élmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output gd:3.4+ |||

12

CS 6212 Design and Analysis of Algorithms Divide & Conquer

e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

---éﬂ -élmmm

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g:l314/5 | | | | |

13

CS 6212 Design and Analysis of Algorithms Divide & Conquer

e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

---éﬂ --ILIIIIE

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g:l31415170 | | | |

14

CS 6212 Design and Analysis of Algorithms Divide & Conquer

e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

----:l --ILIIIIE

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g:l314/517/8] | | |

15

CS 6212 Design and Analysis of Algorithms Divide & Conquer

e Input: Two sorted arrays
1.

o & Db

EXPLANATION OF MERGE

-----* --ILIIIIE

Compare heads

Move smaller value to the output

Move forward the smaller head

Repeat 1-3 until one input half is empty

Move remainder of other half to output

Output g 1l3/4/5/7]/8/9] | |

16

CS 6212 Design and Analysis of Algorithms Divide & Conquer

EXPLANATION OF MERGE

e Input: Two sorted arrays * *

1. Compare heads
Move smaller value to the output
Move forward the smaller head

Repeat 1-3 until one input half is empty

o & Db

Move remainder of other half to output

Output g ! 3/4/5/7/8/9/10/1418

17

CS 6212 Design and Analysis of Algorithms Divide & Conquer

ILLUSTRATION OF MERGESORT
-- WHAT GOES ON INSIDE THE COMPUTER --

Divide <

N

Merge ~<

N

CS 6212 Design and Analysis of Algorithms

9 14| 7 |10|18| 4 e This is what goes
' / \[‘ on inside the
14| 7 |10|18] 4 computer when
\ executing
14| 7 10(18| 4 Metgesort
. / . \ / - . But, don’t do that
3 14 7| |10 18| 4 “at home”
| \ / | \ Rather, ... (see
3 18 a next slide)
1 [
s 2 |18
r !
7 |14 4 |10|18
|
!
4|7 |10|14|18
|
5 8 |9 [10]14]18 18

Divide & Conquer

THE “BOSS-VIEW” OF MERGESORT

Proper Mindset:
1. Divide data into

parts _ 5|8|1|9|3|14|7 |10|18| 4
2. Then, as a boss, | / i .
M,
hand each part to a 5|8|1|0]3 14| 7 [10]18] 4
clone-subordinate

3. Wait for each
subordinate to
come back with its
sub-solution

4. Then, as the boss, Recursive Call Re :
you take the sub- (clone-subordinate) one hordinate
solutions and
merge into a
global solution

5. As as boss,you
take the credit!

e NEVER | |

MICROMANAGE ‘
your subordinates

TIME COMPLEXITY OF MERGESORT
-- DERIVING A RECURRENCE RELATION --

 Time of Merge: O(n)=cn, for some constant ¢, because:
o After each comparison, the input loses one element

* Once the input loses all its elements (after < n comparisons), it is
done

e Time of Mergesort:
e Let T(n) be the time of Mergesort of n elements
e T(n) = (time of each Mergesort on n/2 elements)+(time of Merge)
e T(n) = 2T (g) + cn, T(1)=constant=c

e The above is called a recurrence relation

TIME COMPLEXITY OF MERGESORT posvwes
-- SOLVING THE RECURRENCE RELATION --[iilitass

Theorem

e But we will solve

n k it here more
e T(n) =2T (5) + cn, T(l)=constant=c. Assumen = 2 informally/easily
n n
T(n) = 2T (E) + cn T(n) = 2T (E) ‘;CTl)
n n n
i = 2T = 2?T (=) + 2c=
T(Z) 2T(22)+cz (221 (2221+ 7
n n n 2 (" —_ o3 (__ 2 A
T(ﬁ)‘ZT(Zs)JFCﬁ 2T(22)_2 T(23)+2 ¢
o n n k-1 N _ ok (1 k-1,
T (Zk—l) = 2T (Zk) T 2k—1 ol (Zk—l) =271 (Zk) AT 2k-1
e Eachline above came from
applying the recurrence relation
on some%,fori =01, 2,...k—1
 Multiply each i*" line above by 2! .

CS 6212 Design and Analysis of Algorithms Divide & Conquer

TIME COMPLEXITY OF MERGESORT
-- SOLVING THE RECURRENCE RELATION (2) --

T(n)=2T(g)+cn T(n)=2/T6lZf+cn

n
2T(2)_22T(22)+2cE) »y@:%z+cn
22T(22) - 23T(23)+22c? 22T ;23{(?)+cn

iy (2,?_1) = 2k (zk) + 25 le 2%1{—1) = 247 (o) + en

e Sum of left terms = sum of right terms
 Cancel terms that occur on both sides of “‘=*
« What remains on the leftis:T(n)

« What remains on the right: 25T () + cnk =nT(1) + cnk
Therefore:T(n) = nT(1) + cnk = cn + cnlogn = O(nlogn)

. T(n) = 0(nlogn) .

CS 6212 Design and Analysis of Algorithms Divide & Conquer

SECOND APPLICATION OF D&C
-- QUICKSORT --

e This time we partition the input A[l:n] around an element in
input A[1:n], say a = A|1], such that, after the partitioning:
e All the input elements thatare < a are put in the first (left)
partition
e All the input elementsthatare > a are put in the second (right)

partition

Input A: AN EEEENEDBE

After partitioning around a: <- -)) la| @

e Partitioning takes O(n) time

23

CS 6212 Design and Analysis of Algorithms Divide & Conquer

SECOND APPLICATION OF D&C
-- QUICKSORT ALGORITHM --

Procedure Quicksort(in/out A[l,n];in: p,q) // sorts A[p:q]
// The sorting is in situ,i.e., in place (within the same input array A
begin
intr;
if (p==q) then return; endif // if one element to sort, then sorted
r := partition(A[p:q]); // ris the index where the partitioning
// element (p.a.) lands,i.e., now A[r]==p.a.
Quicksort(A[p:x-1]); // now A[p:r-1]is sorted, and all are < a
Quicksort(A[r+1:q); // now A[r+1:q]is sorted, and all are > a
end

At the end of the algorithm, A[p:q] is sorted, because:

e Alp:r-1]is sorted and all are < a => A[p] <A[p+1] <... <A[r-1] < a = Alr]

e A[r+1l:q] is sorted, and all are > a => a <A[r+1] <A[r+2] <... <A[q]

e Therefore: A[p] <A[p+1] <...<A[r-1] <a =A[r]<A[r+1] <A[x+2] <... <A[q]

TIME COMPLEXITY OF QUICKSORT

e Let T(n) be the time of Quicksort(A[l,n];1,n)

e T(n)= (time of partition)+(time of Quicksort(A[l:n];1,r-1])) +
(time of Quicksort(A[l:n];x+1,n]))

e TM)=cn+Tr—-1)+Tn—71)

e This is a recurrence relation,but we don’t knowr

 Worst-case time complexity:
e r =1 (1.e., partitioning is extremely unbalanced)
e T(M)=cn+T(A-1)+Tn—1)=cn+TO)+T(n—1)
e T(n)=T(n—1)+cn

TIME COMPLEXITY OF QUICKSORT
-- WORST-CASE ANALYSIS --

e Cannot be solved with the Master Theorem b/c the

_ . latter doesn’t apply to this kind of recurrence relation
cT(M)=T(n—1)+cn « We’ll solve it using the informal unfolding method
T(n) % 1) +cn The lines in the left box are all

M ;Qﬂ/z) +c(n—1) derived by applying the top
/Ln/ 3) + c(n — 2) |[@== recurrence relations at different

W

—T(0)+C1=C1 form=nn—1,n-2,..,1.

e Sum of left terms = sum of right terms

e Cancel terms that occur on both sides of “=*

e What remains on the left is: T(n)

e What remains on the right:c(1+ 2+ -+ (n—1) + n)

o Therefore: T(n) =c(1+2+:-+n—-1)+n)=cn(n+1)/2

+ Conclusion: T(1) = 0(n?), which is bad!

26

CS 6212 Design and Analysis of Algorithms Divide & Conquer

TIME COMPLEXITY OF QUICKSORT
-- AVERAGE-CASE ANALYSIS --

e Irony: Quicksortis slow in the worst case (0(n?)) yet it is called
Quicksort

* Reality:In practice,Quicksort is the fastest sorting algorithm
around, faster even than Mergesort (which takes O(n logn) time <
0(n%))

e 5o, what is going on?

 Well, the worst case occurs when the input happensto be already
sorted (or nearly sorted), but that rarely happens

e In practice,the inputis in random order
* S0, the question is: What happens if we have average input

« We need to perform “average-case’ time complexity analysis

AVERAGE-CASE ANALYSIS OF QUICKSORT (1)

e Recall the general recurrence relation:
Tm)=Tr—1)+Tn—-r)+cn

wherercanbe lor2or...orn

e Thus, T(n) can be:

° T(n) —
° T(n) —

\

T(0)
T(1)
T(2)
1 1)

|
|
|

CS 6212 Design and Analysis of Algorithms

f(n — 1?
T(n—2)
T(n—3)
UORy

|

tn

* So,the average value of T(n) is the average of

those n possible values,i.e., (the sum of those
values)/n

or
’ e As you sum,group the terms as shown left

e Thus, the sumis:

tn

2[ITO)+T(D)+TR2)+---T(n—1)]+cn.n

Divide & Conquer

AVERAGE-CASE ANALYSIS OF QUICKSORT (2)

e Therefore, the average of T (n), denoted T4 (n), is:
e T,(n) =sum/n
e Ty(n) = :Z(T(l) +TR2)+ -+ T(n — 1)) + cn.n]/n
e T,(n) =2(T(V) +TQ2)+ -+ T —1)) + cn?|/n

e Multiplying both sides by n, we get
e nTy(n) = 2(T(1) +T(2) + -+ T(n — 1)) + cn?

AVERAGE-CASE ANALYSIS OF QUICKSORT (3)

nT,(n) =2(T(D)+T(2)+ -+ T(n—1)) + cn?

Since we are consideringaverage time, we can assume that each T (i) on the

right (whichis a recursive call on an average part) to be an average time T,(i)
e nTy(n) = Z(TA(l) +T4(2)+ -+ Ty(n— 1)) + cn?

Applying the formulaabove at n — 1, we get

e (n—DTy(n—1) =2(Ty(1) + T4(2) + -+ Ty(n — 2)) + c(n — 1)?
Subtracting the last two equations, we obtain:

e nTy(n)—(n—DTy(n—-1) = 2T4(n —1) + cn? — c(n — 1)?
Performing some arithmetic, we get:

e nTyn)=(n—1DTy(n—1) +2Ty(n—1) + 2cn — ¢

e nTyn)=n+1DTy(n—1)+2cn—c

e nTy(n) < (n+ 1)Ty(n — 1) + 2cn (because we gotrid of —c¢)

AVERAGE-CASE ANALYSIS OF QUICKSORT (4)

nTy(n) < (n+1)Ty(n—1) + 2cn
* Divide both sides by n(n + 1), we get:

. nT 4(n) < (n+1)T4(n—1) 2cn

nn+1) — n(n+1) n(n+1)
, Ta(m) < TA(n—l)_l_Z_c
n+1 n n+1
e Calling f(n) = T;‘fi), and thus f(n—1) = TA(Z_D, the above

equation becomes:

c f) < fn—1) +

AVERAGE-CASE ANALYSIS OF QUICKSORT (5)

2¢ Ta(n) T 4(0)
CFO) < f(n—1) + 25, where f(n) = A% (p(0) = 42 _)
2C
(n) < +

/ M 72’”‘ 1 The lines in the left box are all

c . .
,ﬂen—/l) < M +— derived by applying the top

y) e TECUITENCE relations at different
m < M ;L 2¢

n—1 values: f(m) < f(m— 1) + for

e T eh / m+1
s 2 m=nn—1n-2,..,1.

e Sum of left terms < sum of right terms
 Cancel terms that occur on both sides of “<*
 What remains on the left is: f(n)

e What remains on the right:f(0) + ZC(% + % + .-+ % + L)

n+1

» Therefore:f(n) < ZC(% + % + .- + % + nlj) note: f(0)=0

AVERAGE-CASE ANALYSIS OF QUICKSORT (6)

Ta(n)
n+1

1 1 1 1
*f) s 2c(G g4+ o+), where f(n) =

e From Calculus,l +i4.-4+-+—<Ln (n+1) =0(ogn)
2 3 n n+l

e Therefore,f(n) < 2cLn(n+ 1)
e Since, f(n) = 40 and hence T () =Mm+1)f(n),we get

n+1
e Ty <+ 1)f(n) £ 2c(n+1Ln(n+ 1) = 0(nlogn)

e Conclusion:T 4(n) = O(nlogn)

* Because the constantfactor in the above big-0 is < the constant
factors of the Big-O of other sorting algorithms, Quicksort is faster
on average than other sorting algorithms

THE PARTITION ALGORITHM

e Quicksort did some fancy partitioning

* Now we give an O(n) time in situ partition algorithm

THE PARTITION ALGORITHM (2)

Function Partition(in/out A[p:q])
begin
int 1,j;
real a=A[p]; // a is the partitioning element
i=p;j=q;
while (i <j) do
while (A[i] <= a && i<q) do i++; endwhile
while (A[j] > a && j>p) do j--; endwhile
ifi <jthen
swap (A[i],A[i]); it++; j--;
endif
endwhile
swap (A[p].A[]);
return (j);
end

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5

P T

1

CS 6212 Design and Analysis of Algorithms Divide & Conquer

36

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5

8>5, 4<5 T T
.]

1

CS 6212 Design and Analysis of Algorithms Divide & Conquer

37

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8 18 4
8 9 3 'Z 10 18 4
8>5, 4<5
Swap(A[2],A[10]) T T
1]
4 9 3 14 7 10 18 8
:]

CS 6212 Design and Analysis of Algorithms Divide & Conquer

38

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 18
9 3 'Z 10 18

4

4

Swap(A[2],A[10]) T
1 J

4 3 14 7 10 18 8

8
8
8>5, 4<5 T

b o 'CO

Gl o

CS 6212 Design and Analysis of Algorithms Divide & Conquer

39

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1]
4

b 'CO
q

CS 6212 Design and Analysis of Algorithms Divide & Conquer

40

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1]
4 3 14 7 10 18 8

b 'CO

CS 6212 Design and Analysis of Algorithms Divide & Conquer

41

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1]
4 3 14 7 10 18 8

CS 6212 Design and Analysis of Algorithms Divide & Conquer

42

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5
9 3

8
8
8>5, 4<5
Swap(A[2],A[10]) T T
1]
4 3 14 7 10 18 8

= o '©
o T

CS 6212 Design and Analysis of Algorithms Divide & Conquer

43

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8
8 9 3
8>5, 4<5
Swap(A[2],A[10]) T T
1 J
4 9 8 14 7 10 18 8
9>5, 3<5
Swap(A[4],A[3]) Ti jT

5 4 1 3 9 14 7 10 18 8

CS 6212 Design and Analysis of Algorithms Divide & Conquer

44

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8
8 9 3
8>5, 4<5
Swap(A[2],A[10]) T T
1]
4 9 3 14 7 10 18 8
9>5, 3<5
Swap(A[4],A[5]) Ti jT
.. 5 4 1 3 9 14 7 10 18 8
1>]
Swap(A[1],A[4]) T T
] 1

CS 6212 Design and Analysis of Algorithms Divide & Conquer

45

ILLUSTRATION OF PARTITION

Partitioning

Partition(A[1:10]) 5 8 14 'Z 18 4
5 8 9 3 4
8>5, 4<5
Swap(A[2],A[10])
1
5 4 1 9 3 14 7 10 18 8
9>5, 3<5
Swap(A[4],A[5]) i]
5 4 1 3 9 14 7 10 18 8

1>]
Swap(A[l],A[4])

¢
et o

Now A is partitioned 3 4 1

©

14 7 10 18 8

CS 6212 Design and Analysis of Algorithms Divide & Conquer

TIME COMPLEXITY OF PARTITION

e At every step, either 1 moves one step right or j moves one
step left

e After 1 and j meet and cross by at most one step, only
constant-time work is done and the algorithm terminates

* So the time is proportional to the “total distance” traveled by 1
and j combined

e That traveled distance is the length of the array (no matter
where 1 and] meet)

e Therefore, the time of partition is O(n)

NEXT LECTURE

 We finish Divide and Conquer

« We apply it to the Order Statistics problem:
e Finding the k" smallest element of an arbitrary (unsorted)

array

 We will see a simple way of applying D&C to that problem,
ylelding a slow algorithm

 Then we apply D&C to that problem in a more sophisticated
way, ylelding a much faster algorithm

	CS 6212 Design and Analysis of Algorithms��Lecture: Divide & Conquer – Part I
	Objectives of this Lecture
	Outline
	Divide & conquer�-- general strategy and underlying philosophy --
	Divide & conquer�-- Template --
	First application�-- sorting --
	First application�-- sorting remarks --
	First application�-- mergesort--
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Explanation of Merge
	Illustration of mergesort�-- What goes on inside the computer --
	The “boss-view” of mergesort
	Time complexity of mergesort�-- deriving a recurrence relation --
	Time complexity of mergesort�-- Solving the recurrence relation --
	Time complexity of mergesort�-- Solving the recurrence relation (2) --
	Second application of d&C�-- Quicksort --
	Second application of d&C�-- Quicksort Algorithm --
	Time complexity of Quicksort
	Time complexity of Quicksort�-- worst-case analysis --
	Time complexity of Quicksort�-- average-case analysis --
	average-case analysis of quicksort (1)
	average-case analysis of quicksort (2)
	average-case analysis of quicksort (3)
	average-case analysis of quicksort (4)
	average-case analysis of quicksort (5)
	average-case analysis of quicksort (6)
	The partition algorithm
	The partition algorithm (2)
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Illustration of partition
	Time complexity of partition
	Next lecture

